精英家教网 > 高中数学 > 题目详情
19.已知R上的奇函数f(x)满足f(x-2)=-f(x),且x∈[0,1]时,f(x)=2x+x-1.若方程f(x)=1在区间[-6,4]上有m个不同的根x1,x2,…,xm,则$\sum_{i=1}^{m}$xi=(  )
A.-6B.6C.0D.-4

分析 根据函数的条件,判断函数的周期,利用函数的奇偶性和周期性即可得到结论.

解答 解:∵f(x-2)=-f(x)
∴f(x+2)=-f(x)
∴f(x+4)=-f(x+2)=f(x)
即 f(x)=f(x+4)
∴f(x)是一个周期函数,周期为4.
且f(x-2)=-f(x)=f(-x),则函数的对称轴为x=1,
∵x∈[0,1]时,f(x)=2x+x-1,
∴在[0,2]上满足方程f(x)=1的两根的和为2,
在[-4,-2]上满足方程f(x)=1的两根的和为-6,
∴$\sum_{i=1}^{m}$xi=2-6=-4.
故选:D.

点评 本题主要考查方程根的应用,根据条件结合函数的周期性和奇偶性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\sqrt{3}$sin2ωx-2sin2ωx的最小正周期为3π.
(1)求函数f(x)的解析式;
(2)在△ABC中,若f(C)=1,AB=2,2sin2B=cosB+cos(A-C),求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=2${\;}^{\frac{1}{2}-x}}$的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足an+1=an-2,且a2=1.
(1)求{an}的通项an和前n项和Sn
(2)设${{c}_{n}}=\frac{5-{{a}_{n}}}{2}$,bn=${2}^{{c}_{n}}$,证明数列{bn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=(1,0),则向量$\overrightarrow{a}$在向量$\overrightarrow{b}$方向上的投影为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若集合A={x||x-1|<2},B={1,2,3},则A∩B=(  )
A.{1,2}B.{1,2,3}C.{0,1,2,3}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为多少元,并求出此时生产A,B产品各少件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.数列{an}满足a1=1,$\sqrt{\frac{1}{{a}_{n}^{2}}+2}$=$\frac{1}{{a}_{n+1}}$(n∈N+),记bn=a${\;}_{n}^{2}$,则数列{bnbn+1}的前n项和Sn=$\frac{n}{2n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a,b,c为△ABC的三个角A,B,C所对的边,若3sinBcosC=sinC(1-3cosB),则sinC:sinA=(  )
A.2:3B.4:3C.3:1D.3:2

查看答案和解析>>

同步练习册答案