精英家教网 > 高中数学 > 题目详情
已知函数f(x)是(-∞,+∞)上的偶函数,若对于x≥0,都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log(x+1),则f(-2001)+f(2012)(  )
分析:由f(x+2)=-f(x)变形得到f(x+4)=f(x),说明当x≥0时函数是以4为周期的周期函数,运用周期函数的概念和函数是偶函数把要求的函数值转化为求[0,2)内的函数值.
解答:解:当x≥0,有f(x+2)=-f(x),所以f(x+4)=f[(x+2)+2]=-f(x+2)=-[-f(x)]=f(x),
所以当x≥0时,f(x)是以4为周期的周期函数,所以f(2012)=f(503×4+0)=f(0)=log2(0+1)=0.
又函数f(x)是(-∞,+∞)上的偶函数,所以f(-2001)=f(2001)=f(500×4+1)=f(1)=log2(1+1)=1.
所以f(-2001)+f(2012)=1.
故选D.
点评:本题考查了对数的运算性质,考查了函数的奇偶性,考查了数学转化思想,解答此题的关键是运用函数的周期性进行转化,此题为中低档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0
(1)判断函数的奇偶性;
(2)判断函数f(x)在[-1,1]上是增函数,还是减函数,并用单调性定义证明你的结论;
(3)设f(1)=1,若f(x)<(1-2a)m+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是偶函数,当x∈(0,1)时,f(x)=2x-1,则f(-
1
2
)
的值为
2
-1
2
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是 R上的增函数,A(0,-1),B(3,1)是其图象上的两点,那么|f(x)|<1的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数,其最小正周期为3,且当x∈(0,
3
2
)
时,f(x)=2-x+1,则f(8)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上,图象关于原点对称,且是f(x+1)=-
1
f(x)
,当x∈(0,1)时,f(x)=2x-1,则f(log
1
2
6)=
-
1
2
-
1
2

查看答案和解析>>

同步练习册答案