精英家教网 > 高中数学 > 题目详情
一个正方体内接于一个球,过球心作一个截面,则截面不可能的图形为(  )
A、
B、
C、
D、
考点:平行投影及平行投影作图法,球内接多面体
专题:空间位置关系与距离
分析:当截面的角度和方向不同时,球的截面不相同,应分情况考虑即可.
解答: 解:当截面平行于正方体的一个侧面时得C,
当截面过正方体的体对角面时得B,
当截面不平行于任何侧面和对角面时得A,
但无论如何都不能截出D,
故选D.
点评:本题主要考查了球内接多面体、棱柱的结构特征.注意截面的形状既与被截的几何体有关,还与截面的角度和方向有关.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于三角函数f(x)=sin(x+
3
2
π)的图象,下列说法正确的是(  )
A、f(x)是奇函数
B、f(x)的图象关于直线x=
π
2
对称
C、f(x)的周期为π
D、f(x)的图象关于点(
π
2
,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在实常数k和b,使得函数F(x)和G(x)对其公共定义域上的任意实数x都满足:F(x)≥kx+b和G(x)≤kx+b恒成立,则称此直线y=kx+b为F(x)和G(x)的“隔离直线”.已知函数f(x)=x2(x∈R),g(x)=
1
x
(x<0),h(x)=2elnx.有下列命题:
①F(x)=f(x)-g(x)在x∈(-
1
32
,0)内单调递增;
②f(x)和g(x)之间存在“隔离直线”,且b的最小值为-4;
③f(x)和g(x)之间存在“隔离直线”,且k的取值范围是(-4,0];
④f(x)和h(x)之间存在唯一的“隔离直线”y=2
e
x-e.
其中真命题的个数有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知不等式(2a-b-c)(a-c)•2n≥(a-b)(b-c)(t•2n+1)对任意a>b>c及n∈N恒成立,则实数t的取值范围为 (  )
A、(-∞,4
2
-1]
B、(-∞,2+2
2
]
C、[4
2
-1,+∞)
D、[2+2
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

当输入a的值为2,b的值为-3时,右边程序运行的结果是(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l的倾斜角为60°,则直线l的斜率是(  )
A、
1
2
B、
3
2
C、-
3
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

计算sin45°cos15°+cos45°sin15°=(  )
A、-
3
2
B、-
1
2
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈(0,+∞),x3-x2+1≥0,”的否定是(  )
A、?x∈(0,+∞),x3-x2+1≤0
B、?x∈(0,+∞),x3-x2+1≤0
C、?x∈(0,+∞),x3-x2+1<0
D、?x∈(0,-∞),x3-x2+1<0

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下面一组组合数等式:
1•
C
1
n
=n•
C
0
n-1

2•
C
2
n
=n•
C
1
n-1

3•
C
3
n
=n•
C
2
n-1


(Ⅰ)由以上规律,请写出第k(k∈N*)个等式并证明;
(Ⅱ)随机变量X~B(n,p),求证:EX=np.

查看答案和解析>>

同步练习册答案