精英家教网 > 高中数学 > 题目详情

【题目】下列命题中是真命题的个数是( )

(1)垂直于同一条直线的两条直线互相平行

(2)与同一个平面夹角相等的两条直线互相平行

(3)平行于同一个平面的两条直线互相平行

(4)两条直线能确定一个平面

(5)垂直于同一个平面的两个平面平行

A. B. C. D.

【答案】A

【解析】分析:逐一分析判断每一个命题的真假.

详解:对于(1),垂直于同一条直线的两条直线可能平行,也可能异面或相交.所以是错误的.对于(2),与同一个平面夹角相等的两条直线可能互相平行,也可能相交或异面,所以是错误的.对于(3),平行于同一个平面的两条直线可能互相平行,也可能异面或相交,所以是错误的.对于(4)两条直线能不一定确定一个平面,还有可能不能确定一个平面,所以是错误的.对于(5),垂直于同一个平面的两个平面不一定平行,还有可能相交,所以是错误的.故答案为:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆和双曲线有共同焦点是它们的一个交点,记椭圆和双曲线的离心率分别,则的最小值是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+1)=f(x﹣1),已知当x∈[0,1]时,f(x)=2x1 , 有以下结论:
①2是函数f(x)的一个周期;
②函数f(x)在(1,2)上单调递减,在(2,3)上单调递增;
③函数f(x)的最大值为1,最小值为0;
④当x∈(3,4)时,f(x)=23x
其中,正确结论的序号是 . (请写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,的中点.

(1)求证:平面

(2)求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣klnx,(常数k>0).
(1)试确定函数f(x)的单调区间;
(2)若对于任意x≥1,f(x)>0恒成立,试确定实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|ω|< )的部分图象如图所示,下列说法正确的是(

A.函数f(x)的最小正周期为2π
B.函数f(x)的图象关于点(﹣ ,0)对称
C.将函数f(x)的图象向左平移 个单位得到的函数图象关于y轴对称
D.函数f(x)的单调递增区间是[kπ+ ,kπ+ ](K∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , a1=1,an= +2(n﹣1)(n∈N*).
(1)求证:数列{an}为等差数列,并分别写出an和Sn关于n的表达式;
(2)设数列 的前n项和为Tn , 证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣ax﹣alnx(a∈R),g(x)=﹣x3+ x2+2x﹣6,g(x)在[1,4]上的最大值为b,当x∈[1,+∞)时,f(x)≥b恒成立,则a的取值范围(
A.a≤2
B.a≤1
C.a≤﹣1
D.a≤0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对正整数n,有抛物线y2=2(2n﹣1)x,过P(2n,0)任作直线l交抛物线于An , Bn两点,设数列{an}中,a1=﹣4,且an= (其中n>1,n∈N),则数列{an}的前n项和Tn=(
A.4n
B.﹣4n
C.2n(n+1)
D.﹣2n(n+1)

查看答案和解析>>

同步练习册答案