精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2﹣ax﹣alnx(a∈R),g(x)=﹣x3+ x2+2x﹣6,g(x)在[1,4]上的最大值为b,当x∈[1,+∞)时,f(x)≥b恒成立,则a的取值范围(
A.a≤2
B.a≤1
C.a≤﹣1
D.a≤0

【答案】B
【解析】解:g′(x)=﹣3x2+5x+2,令g′(x)=0得x=2或x=﹣
当1≤x<2时,g′(x)>0,当2<x<4时,g′(x)<0,
∴g(x)在[1,2)上单调递增,在(2,4]上单调递减,
∴b=g(2)=0.
∴f(x)≥0在[1,+∞)上恒成立,
f′(x)=2x﹣a﹣ =
令h(x)=2x2﹣ax﹣a,△=a2+8a.
1)若△=a2+8a≤0,即﹣8≤a≤0,则h(x)≥0恒成立,
∴f′(x)≥0恒成立,∴f(x)在[1,+∞)上是增函数,
∴fmin(x)=f(1)=1﹣a≥0,解得a≤1,
∴﹣8≤a≤0.
2)若△=a2+8a>0,即a<﹣8或a>0.
令f′(x)=0得h(x)=0,解得x= (舍)或x=
若a<﹣8,则 <0,则h(x)>0在[1,+∞)上恒成立,
∴f′(x)>0恒成立,∴f(x)在[1,+∞)上是增函数,
∴fmin(x)=f(1)=1﹣a≥0,解得a≤1,
∴a<﹣8.
若0< ≤1,即0<a≤1,则h(x)>0在[1,+∞)上恒成立,
∴f′(x)≥0恒成立,∴f(x)在[1,+∞)上是增函数,
∴fmin(x)=f(1)=1﹣a≥0,解得a≤1,
∴0<a≤1.
>1,即a>1时,则1≤x< 时,h(x)<0,当x> 时,h(x)>0.
∴1≤x< 时,f′(x)<0,当x> 时,f′(x)>0.
∴f(x)在[1, ]上单调递减,在( ,+∞)上单调递增.
此时fmin(x)<f(1)=1﹣a<0,不符合题意.
综上,a的取值范围是(﹣∞,1].
故选:B.
【考点精析】利用函数的最值及其几何意义和函数的最大(小)值与导数对题目进行判断即可得到答案,需要熟知利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值;求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中, 底面,D是PC的中点,已知,AB=2,AC=,PA=2.

(1)求三棱锥P-ABC的体积

(2)求异面直线BC与AD所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中是真命题的个数是( )

(1)垂直于同一条直线的两条直线互相平行

(2)与同一个平面夹角相等的两条直线互相平行

(3)平行于同一个平面的两条直线互相平行

(4)两条直线能确定一个平面

(5)垂直于同一个平面的两个平面平行

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,点为椭圆上一点. 的重心为,内心为,且,则该椭圆的离心率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标平面中,的两个顶点为,平面内两点同时满足:++=;②||=||=||;③

1)求顶点的轨迹的方程;

(2)过点作两条互相垂直的直线,直线与点的轨迹相交弦分别为,设弦的中点分别为.求四边形的面积的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前三项依次为a,3,5a,n项和为SnSk=121.

(1)ak的值;

(2)设数列{bn}的通项bn证明数列{bn}是等差数列并求其前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱台 中,分别为AC,CB的中点.

(1)求证:平面

(2)若,求证:平面 平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱台的上下底面分别是边长为的正方形,底面,点的中点,边上,且.

(1)求证:∥平面

(2)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}(n≥1,n∈N)满足a1=2,a2=6,且(an+2﹣an+1)﹣(an+1﹣an)=2,若[x]表示不超过x的最大整数,则[ + +…+ ]=

查看答案和解析>>

同步练习册答案