精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥P-ABC中, 底面,D是PC的中点,已知,AB=2,AC=,PA=2.

(1)求三棱锥P-ABC的体积

(2)求异面直线BC与AD所成角的余弦值。

【答案】(1);(2).

【解析】

(1)先求出的面积结合底面,利用锥体的体积公式能求出三棱锥的体积;(2)中点连接,则是异面直线所成的角或其补角),根据余弦定理能求出异面直线所成角的余弦值.

(1)∵在三棱锥PABC中,PA⊥底面ABC,DPC的中点

BAC= AB=2,AC=PA=2.∴

∴三棱锥PABC的体积为

(2)如图,取PB的中点E,连接DE,AE,则EDBC

∴∠ADE或其补角是异面直线BCAD所成的角.

在△ADE中,

中,

:异面直线BCAD所成角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆M过C(1,-1),D(-1,1)两点,且圆心M在x+y-2=0上.

(1)求圆M的方程;

(2)设点P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆和双曲线有共同焦点是它们的一个交点,记椭圆和双曲线的离心率分别,则的最小值是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.
(Ⅰ)求a;
(Ⅱ)证明:f(x)存在唯一的极大值点x0 , 且e﹣2<f(x0)<2﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其图象与直线y=﹣1相邻两个交点的距离为π,若f(x)>1对x∈(﹣ )恒成立,则φ的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棱长为1的正方体中,分别是的中点.

在直线上运动时,三棱锥体积不变;

在直线上运动时,始终与平面平行;

③平面平面

④连接正方体的任意的两个顶点形成一条直线,其中与棱所在直线异面的有条;

其中真命题的编号是_______________.(写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+1)=f(x﹣1),已知当x∈[0,1]时,f(x)=2x1 , 有以下结论:
①2是函数f(x)的一个周期;
②函数f(x)在(1,2)上单调递减,在(2,3)上单调递增;
③函数f(x)的最大值为1,最小值为0;
④当x∈(3,4)时,f(x)=23x
其中,正确结论的序号是 . (请写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,的中点.

(1)求证:平面

(2)求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣ax﹣alnx(a∈R),g(x)=﹣x3+ x2+2x﹣6,g(x)在[1,4]上的最大值为b,当x∈[1,+∞)时,f(x)≥b恒成立,则a的取值范围(
A.a≤2
B.a≤1
C.a≤﹣1
D.a≤0

查看答案和解析>>

同步练习册答案