精英家教网 > 高中数学 > 题目详情
(本小题满分14分)
在棱长为2的正方体ABCD—A1B1C1D1中,E,F分别为A1D1和CC1的中点.

(Ⅰ)求证:EF//平面ACD1
(Ⅱ)求异面直线EF与AB所成的角的余弦值;
(Ⅲ)在棱BB1上是否存在一点P,使得二面角P—AC—B的大小为30°?若存在,求出BP的长;若不存在,请说明理由.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图1,在平面内,ABCD是的菱形,ADD``A1和CD D`C1都是正方形.将两个正方形分别沿AD,CD折起,使D``与D`重合于点D1 .设直线l过点B且垂直于菱形ABCD所在的平面,点E是直线l上的一个动点,且与点D1位于平面ABCD同侧(图2).
  
(Ⅰ) 设二面角E – AC – D1的大小为q,若£q£,求线段BE长的取值范围;
(Ⅱ)在线段上存在点,使平面平面,求与BE之间满足的关系式,并证明:当0 < BE < a时,恒有< 1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(文科做)(本题满分14分)如图,在长方体
ABCDA1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.
(1)证明:D1EA1D;
(2)当EAB的中点时,求点E到面ACD1的距离;
(3)AE等于何值时,二面角D1ECD的大小为.                      

(理科做)(本题满分14分)
如图,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,
CA =AA1 =M为侧棱CC1上一点,AMBA1
(Ⅰ)求证:AM⊥平面A1BC
(Ⅱ)求二面角BAMC的大小;
(Ⅲ)求点C到平面ABM的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)如图,在四棱锥中,
底面是矩形,侧棱PD⊥底面
的中点,作于点.
(1)证明:∥平面
(2)证明:⊥平面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)

 

 
如图所示,在正三棱柱中,的中点,在线段上且

(I)证明:
(II)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在棱长均为2的正四棱锥中,点E为PC的中点,则下列命题正确的是(  )(正四棱锥即底面为正方形,四条侧棱长相等,顶点在底面上的射影为底面的中心的四棱锥)
A.,且直线BE到面PAD的距离为
B.,且直线BE到面PAD的距离为
C.,且直线BE与面PAD所成的角大于
D.,且直线BE与面PAD所成的角小于

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
P为正方形ABCD所在平面外一点,PA⊥面ABCD,AE⊥PB,求证:AE⊥PC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本大题8分)已知正方体,求:

(1)异面直线所成的角;
(2)证明:直线//平面C
(3)二面角D— AB—C的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.如图,四棱锥P-ABCD中,PA⊥底面ABCD,,AD=CD=1,∠=120°,=,∠=90°,M是线段PD上的一点(不包括端点).

(1)求证:BC⊥平面PAC;
(2)求异面直线AC与PD所成的角的余弦值
(3)试确定点M的位置,使直线MA与平面PCD所成角的正弦值为

查看答案和解析>>

同步练习册答案