精英家教网 > 高中数学 > 题目详情
7.化简$2{cos^2}α-(tanα+\frac{1}{tanα})•\frac{1}{2}$sin2α=cos2α.

分析 由条件利用同角三角函数的基本关系,二倍角的余弦公式化简所给的式子,可得结果.

解答 解:$2{cos^2}α-(tanα+\frac{1}{tanα})•\frac{1}{2}$sin2α=cos2α+1-($\frac{sinα}{cosα}$+$\frac{cosα}{sinα}$)•sinαcosα=cos2α+1-(sin2α+cos2α)=cos2α,
故答案为:cos2α.

点评 本题主要考查同角三角函数的基本关系,二倍角的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在等比数列{an}中,a1a4=32,a6=64.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,求S1+2S2+…+nSn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=asinx+(2-b)cosx(a>0,b>0)关于直线x=$\frac{π}{4}$对称,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若sin(α-β)sinβ-cos(α-β)cosβ=$\frac{4}{5}$,且α为第二象限角,则tan2α=(  )
A.$-\frac{24}{25}$B.$-\frac{24}{7}$C.$\frac{24}{25}$D.$\frac{24}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}满足a1=2,a2=3,an+2=|an+1-an|,则a2015=(  )
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=Asin(x+φ)(A>0且ω>0,0<φ<$\frac{π}{2}$)的部分图象,如图所示.
(1)求函数解析式;
(2)若方程f(x)=a,在(0,$\frac{5π}{3}$)上有两个不同的实根,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=2x3-3mx2+6x在区间(2,+∞)上为增函数,则实数m的取值范围是(-∞,2.5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列三个命题:
(1)变量y与x回归直线方程是表示y与x之间真实关系的一种效果最好的拟合.
(2)残差平方和越小的模型,拟合的效果越好.
(3)用相关指数R2来刻画回归的效果时,R2的值越小,说明模型拟合的效果越好.
其中真命题的个数有(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知复数z1=a-4i,z2=8+6i,$\frac{z_1}{z_2}$为纯虚数,求实数a的值.

查看答案和解析>>

同步练习册答案