精英家教网 > 高中数学 > 题目详情
1.在单调递增数列{an}中,a1=2,不等式(n+1)an≥na2n对任意n∈N*都成立.
(1)求a2的取值范围.
(2)判断数列{an}能否为等比数列,请说明理由.

分析 (1)利用数列的单调性即可得出.
(2)数列{an}不能为等比数列.用反证法证明:假设数列{an}是公比为q的等比数列,a1=2>0,an=2qn-1.根据{an}单调递增,可得q>1.根据n∈N*,(n+1)an≥na2n都成立.可得n∈N*,1+$\frac{1}{n}$≥qn.?n0∈N*,使得当n≥n0时,qn>2.可得矛盾.

解答 解:(1)∵{an}是单调递增数列,a1=2,不等式(n+1)an≥na2n对任意n∈N*都成立.
∴a2>a1,a2>2.
令n=1,2a1≥a2,a2≤4,
∴a2∈(2,4].
(Ⅱ)证明:数列{an}不能为等比数列.
用反证法证明:
假设数列{an}是公比为q的等比数列,a1=2>0,an=2qn-1
因为{an}单调递增,所以q>1.
因为n∈N*,(n+1)an≥na2n都成立.
所以n∈N*,1+$\frac{1}{n}$≥qn
因为q>1,所以?n0∈N*,使得当n≥n0时,qn>2.
因为1+$\frac{1}{n}$≤2(n∈N*).
所以?n0∈N*,当n≥n0时,qn>1+$\frac{1}{n}$,与①矛盾,故假设不成立.

点评 本题考查了数列递推关系、数列的单调性、反证法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.命题p:关于x的不等式x2+(a-1)x+a2≤0的解集为∅;
命题q:函数y=(2a2-a)x增函数.若p∨q是真命题p∧q是假命题.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.给出下列命题:
①已知a,b都是正数,且$\frac{a+1}{b+1}>\frac{a}{b}$,则a<b;
②已知f'(x)是f(x)的导函数,若?x∈R,f'(x)≥0,则f'(1)<f(2)一定成立;
③命题“?x∈R,使得x2-2x+1<0”的否定是真命题;
④x≤1且y≤1是“x+y≤2”的充要条件;
⑤将23(10)化成二进位制数是10111(2)
⑥某同学研究变量x,y之间的相关关系,并求得回归直线方程:他得出一个结论:y与x正相关且$\widehaty=-4.326x-4.5$.其中正确的命题的序号是①③⑤(把你认为正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设x0是方程lnx+x=4的解,且x0∈(k,k+1)(k∈Z),求k的值为(  )
A.1B.2C.4D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.复数$\frac{3-i}{1-i}$的共轭复数等于(  )
A.1+2iB.1-2iC.2+iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.与cos50°cos20°+sin50°sin20°相等的是(  )
A.cos30°B.sin30°C.cos70°D.sin70°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=ex(x-aex) 恰有两个极值点x1,x2(x1<x2),则a的取值范围是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若z(1-i)=|1-i|+i(i为虚数单位),则复数z的虚部为(  )
A.$\frac{{\sqrt{2}-1}}{2}$B.$\sqrt{2}-1$C.1D.$\frac{{\sqrt{2}+1}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知动圆过定点(1,0),且与直线x=-1相切.
(1)求动圆圆心的轨迹M的方程;
(2)过(1)中轨迹M上的点P(1,2)作两条直线分别与轨迹M相交于C(x1,y1),D(x2,y2)两点,试探究:当直线PC,PD的斜率存在且倾斜角互补时,直线CD的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案