精英家教网 > 高中数学 > 题目详情
13.函数f(x)=ex(x-aex) 恰有两个极值点x1,x2(x1<x2),则a的取值范围是(0,$\frac{1}{2}$).

分析 根据题意,对函数f(x)求导数,得出导数f′(x)=0有两不等实根,转化为两函数有两个交点的问题,结合图象即可得出a的取值范围.

解答 解:∵函数f(x)=ex(x-aex),求导,f′(x)=(x+1-2a•ex)ex
由于函数f(x)的两个极值点为x1,x2
即x1,x2是方程f′(x)=0的两不等实根,
即方程x+1-2aex=0,且a≠0,$\frac{x+1}{2a}$=ex
设y1=$\frac{x+1}{2a}$(a≠0),y2=ex
在同一坐标系内画出这两个函数的图象,
如图所示:

要使这两个函数有2个不同的交点,应满足$\left\{\begin{array}{l}{\frac{1}{2a}>0}\\{\frac{1}{2a}>1}\end{array}\right.$,
解得:0<a<$\frac{1}{2}$,
∴a的取值范围是(0,$\frac{1}{2}$),
故答案为:(0,$\frac{1}{2}$).

点评 本题考查利用导数研究函数的单调性与极值的应用,也考查了转化思想与数形结合的应用问题,是综合性题目,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=\left\{\begin{array}{l}lnx,x>0\\-x,x<0\end{array}\right.$,若$f({\frac{1}{3}})=\frac{1}{3}f(a)$,则实数a的值为(  )
A.$\frac{1}{27}$B.$-\frac{1}{27}$C.ln27D.$ln\frac{1}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=3x,f(a+2)=27,函数g(x)=λ•2ax-4x的定义域为[0,2].
(1)求a的值;
(2)若函数g(x)在[0,2]上单调递减,求λ的取值范围;
(3)若函数g(x)的最大值是1,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在单调递增数列{an}中,a1=2,不等式(n+1)an≥na2n对任意n∈N*都成立.
(1)求a2的取值范围.
(2)判断数列{an}能否为等比数列,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数$\frac{5}{2-i}$的虚部是(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=log3(9x+1)-x.
(1)判断函数f(x)的奇偶性并证明;
(2)设函数g(x)=log3(a+2-$\frac{a+4}{{3}^{x}}$),若关于x的不等式f(x)≥g(x)对x∈[-1,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知复数$z=\frac{5a}{2+i}+\frac{1+i}{1-i},a∈R$,若复数z对应的点在复平面内位于第四象限,则实数a的取值范围是(  )
A.a>1B.a<0C.0<a<1D.a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.国家标准规定:轻型汽车的氮氧化物排放量不得超过80mg/km.根据这个标准,检测单位从某出租车公司运营的A、B两种型号的出租车中分别抽取5辆,对其氮氧化物的排放量进行检测,检测结果记录如下(单位:mg/km)
A8580856090
B7090957075
(Ⅰ)从被检测的5辆A型号的出租车和5辆B型号的出租车中分别抽取2辆,求抽取的这4辆车的氮氧化物排放量均不超过80mg/km的概率;
(Ⅱ)从被检测的5辆B种型号的出租车中任取2辆,记“氮氧化物排放量超过80mg/km”的车辆数为ξ,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知P为椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上任意一点,F1,F2为左、右焦点,M为PF1中点.如图所示:若|OM|+$\frac{1}{2}$|PF1|=2,离心率e=$\frac{\sqrt{3}}{2}$.
(1)求椭圆E的标准方程;
(2)已知直线l经过(-1,$\frac{1}{2}$)且斜率为$\frac{1}{2}$与椭圆交于A,B两点,求弦长|AB|的值.

查看答案和解析>>

同步练习册答案