试题分析:因为函数f(x)为分段函数,函数y=f(f(x))-2为复合函数,故需要分类讨论,确定函数y=f(f(x))+1的解析式,从而可得函数y=f(f(x))-2的零点个数;解:分四种情况讨论.(1)0<x<1时,lnx<0,∴y=f(f(x))+1=-ln(-lnx)+1,此时的零点为x=
>1;(2)x>1时,lnx>0,∴y=f(f(x))+1=klnx+1,则k>0时,有一个零点,k<0时,klnx+1>0没有零点;(3)若x<0,kx+2≤0时,y=f(f(x))+1=k
2x+k+1,则k>0时,kx≤-2,k
2x≤-k,可得k
2x+k≤0,y有一个零点,若k<0时,则k
2x+k≥0,y没有零点,(4)若x<0,kx+2>0时,y=f(f(x))+1=ln(kx+1)+1,则k>0时,即y=0可得kx+2=
,y有一个零点,k<0时kx>0,y没有零点,综上可知,当k>0时,有4个零点;当k<0时,有1个零点,故选A;k=0,y=f(f(x))-2,有无数个零点,故选A.
点评:本题考查分段函数,考查复合函数的零点,解题的关键是分类讨论确定函数y=f(f(x))+1的解析式,考查学生的分析能力,是一道中档题;