精英家教网 > 高中数学 > 题目详情
8.设数列{an}是公差为2的等差数列,数列{bn}的前n项和Sn,满足2Sn=3n+1-3且a2=b1
(1)求数列{an}和{bn}的通项公式;
(2)若cn=an•bn,设Tn为{cn}的前n项和,求Tn

分析 (1)由n=1时,b1=S1;n>1时,bn=Sn-Sn-1=,可得bn=3n,再由等差数列的通项公式可得an=2n-1;
(2)求得cn=an•bn=(2n-1)•3n,运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理即可得到所求和.

解答 解:(1)2Sn=3n+1-3,即为Sn=$\frac{1}{2}$(3n+1-3),
当n=1时,b1=S1=3,
n>1时,bn=Sn-Sn-1=$\frac{1}{2}$(3n+1-3)-$\frac{1}{2}$(3n-3)=3n
综上可得bn=3n
由a2=b1=3,d=2,可得a1=1,
an=a1+(n-1)d=1+2(n-1)=2n-1;
(2)cn=an•bn=(2n-1)•3n
Tn=1•3+3•32+5•33+…+(2n-1)•3n
即有3Tn=1•32+3•33+5•34+…+(2n-1)•3n+1
两式相减可得,-2Tn=3+2(32+33+34+…+3n)-(2n-1)•3n+1
=3+2•$\frac{9(1-{3}^{n-1})}{1-3}$-(2n-1)•3n+1
化简可得Tn=3+(n-1)•3n+1

点评 本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的求和方法:错位相减法,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知复数z1=m+(1-m2)•i(m∈R),z2=cosθ+(λ+2sinθ)•i(λ,θ∈R).
(1)当m=3时,求z1的虚部;
(2)若z1=z2,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若复数$\frac{2-bi}{1+i}$(b∈R)为纯虚数,则b=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知F1,F2为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,O是坐标原点,过F2作垂直于x轴的直线MF2交椭圆于M,设|MF2|=d.
(1)证明:b2=ad;
(2)若M的坐标为($\sqrt{2}$,1),求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.为得到y=cosx的图象,只需将y=sin(x+$\frac{π}{6}$)的图象(  )
A.向左平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{6}$个单位
C.向左平移$\frac{π}{3}$个单位D.向右平移$\frac{π}{3}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,在矩形ABCD中,AB=2$\sqrt{3}$,BC=2,动点P,Q,R分别在边AB、BC、CA上,且满足PQ=QR=PR,则线段PQ的最小值是$\frac{2\sqrt{21}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若向正△ABC内任意投入一点,则点恰好落在△ABC的内切圆内的概率为$\frac{\sqrt{3}π}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知函数y=f(x)的定义域为(-2,2),求函数y=f(lgx)的定义域.
(2)己知函数y=f(2x)的定义域为(-1,1),求函数y=f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.抛物线:x2=2py(p>0)内接Rt△OAB(O为坐标原点)的斜边为AB,点O到直线AB的距离的最大值为(  )
A.2pB.pC.$\frac{p}{2}$D.$\frac{p}{4}$

查看答案和解析>>

同步练习册答案