精英家教网 > 高中数学 > 题目详情
20.若向正△ABC内任意投入一点,则点恰好落在△ABC的内切圆内的概率为$\frac{\sqrt{3}π}{9}$.

分析 求出正三角形的面积与其内切圆的面积,利用几何概型的概率公式即可求出对应的概率.

解答 解:∵正三角形边长为a
∴该正三角形的面积S正三角形=$\frac{\sqrt{3}}{4}$a2
其内切圆半径为r=$\frac{1}{3}$×$\frac{\sqrt{3}}{2}$a=$\frac{\sqrt{3}}{6}$a,
内切圆面积为S内切圆=πr2=$\frac{π}{12}$a2
∴点落在圆内的概率为P=$\frac{\frac{π}{12}{a}^{2}}{\frac{\sqrt{3}}{4}{a}^{2}}$=$\frac{\sqrt{3}π}{9}$.
故答案为:$\frac{\sqrt{3}π}{9}$.

点评 本题考查了几何概型的计算问题,求出对应的区域面积是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.用反证法证明命题:“若(a-1)(b-1)(c-1)<0,则a,b,c中至少有一个小于1”时,下列假设中正确的是(  )
A.假设a,b,c中至多有一个大于1B.假设a,b,c中至多有两个小于1
C.假设a,b,c都大于1D.假设a,b,c都不小于1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\sqrt{3}$sinωxcosωx+cos2ωx+a(ω>0),其图象相邻对称轴之间的距离为$\frac{π}{2}$,f(x)的最大值为$\frac{1}{2}$.
(Ⅰ)求ω和a;
(Ⅱ)将函数y=f(x)的图象向左平移$\frac{π}{24}$个单位,再将所得图象上各点的横坐标伸长为原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[0,3π]上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}是公差为2的等差数列,数列{bn}的前n项和Sn,满足2Sn=3n+1-3且a2=b1
(1)求数列{an}和{bn}的通项公式;
(2)若cn=an•bn,设Tn为{cn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.等差数列{an}的前n项和为Sn,a10=40,a20=20,求:
①a1及an
②若Sn=490,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=lg(x2-ax-1)在(1,+∞)上是增函数,则实数a的取值范围是a≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数F(x)=(2x-2-x)•f(x),F(x)为偶函数,则函数f(x)为(  )
A.偶函数B.奇函数C.非奇非偶函数D.既奇又偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=ax+\frac{a-2}{x}+2-2a$(a>0).
(Ⅰ)当a=1时,求函数f(x)在点(2,f(2))处的切线方程;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{3}$x3-mx2+$\frac{3}{2}$mx(m>0)
(1)当m=2时,求函数y=f(x)的单调递增区间;
(2)若函数f(x)既有极大值,又有极小值,且当0≤x≤4m时,f(x)<mx2+($\frac{3}{2}$m-3m2)x+$\frac{32}{3}$恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案