精英家教网 > 高中数学 > 题目详情
12.函数$y=5co{s}(2x+\frac{π}{6})$图象的一条对称轴方程是(  )
A.$x=\frac{π}{12}$B.$x=\frac{π}{6}$C.$x=\frac{5π}{12}$D.$x=\frac{π}{3}$

分析 由条件利用余弦函数的图象的对称性可得2x+$\frac{π}{6}$=kπ,k∈Z,由此求得x的值,可得函数图象的对称轴方程.

解答 解:对于函数$y=5co{s}(2x+\frac{π}{6})$,令2x+$\frac{π}{6}$=kπ,k∈Z,求得x=$\frac{kπ}{2}$-$\frac{π}{12}$,
结合所给的选项,
故选:C.

点评 本题主要考查余弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.若An和Bn分别表示数列{an}和{bn}的前n项和,对任意正整数n,an=-$\frac{2n+3}{2},4{B_n}-12{A_n}$=13n
(1)求数列{bn}的通项公式;
(2)设集合X={x|x=2an,n∈N*},Y={y|y=4bn,n∈N*},若等差数列{cn}的任意项cn∈X∩Y,c1是X∩Y中最大数,且-265<c10<-125,求{cn}的通项公式;
(3)(1+2x)n展开式中所有先给的二项式系数和为dn,设数列{kn}满足kn=$\frac{{-2{a_n}-10}}{d_n}$,若不等式kn≤2t+a对一切n∈N*,t∈[-5,5]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)化简$\frac{sin(-α)cos(2π+α)}{sin2α}$;         
(2)计算:4${\;}^{\frac{1}{2}}$+2log23-log2$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若[x]表示不超过x的最大整数,执行如图所示的程序框图,则输出的S值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知sin(π-θ)<0,cos(π+θ)>0,则θ为第几象限角(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=3sin2x+2cosx-4(x∈R)的值域是[-6,-$\frac{2}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f1(x),f2(x)分别是定义在R上的偶函数和奇函数,且满足f1(x)+f2(x)=x2-2+$\frac{1}{2}({e^x}-{e^{-x}})$.
(1)求函数f1(x)和f2(x)的解析式;
(2)已知函数g(x)=f1(x)+2(x+1)+alnx在区间(0,1]上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$y=sin(-3x+\frac{π}{4})$的最小正周期是(  )
A.$\frac{2π}{3}$B.$-\frac{2π}{3}$C.$\frac{π}{3}$D.$-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.定义在R上的函数g(x)及二次函数h(x)满足:g(x)+2g(-x)=ex+$\frac{2}{ex}$-9,h(-2)=h(0)=1且h(-3)=-2.
(1)求g(x)和h(x)的解析式;
(2)对于x1,x2∈[-1,1],均有h(x1)+ax1+5≥g(x2)-x2g(x2)成立,求a的取值范围.

查看答案和解析>>

同步练习册答案