精英家教网 > 高中数学 > 题目详情
3.(1)化简$\frac{sin(-α)cos(2π+α)}{sin2α}$;         
(2)计算:4${\;}^{\frac{1}{2}}$+2log23-log2$\frac{9}{8}$.

分析 (1)根据诱导公式和二倍角公式化简即可;
(2)根据对数的运算性质计算即可.

解答 解:(1)$\frac{sin(-α)cos(2π+α)}{sin2α}$=$\frac{-sinαcosα}{2sinαcosα}$=-$\frac{1}{2}$;     
(2)4${\;}^{\frac{1}{2}}$+2log23-log2$\frac{9}{8}$=2+log29-log2$\frac{9}{8}$=2+log28=5.

点评 本题考查的知识点是对数的运算性质,和三角形函数的化简,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xoy中,已知点P(0,1),Q(0,2),椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,以坐标原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T.求证:点T在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若x、y满足约束条件$\left\{\begin{array}{l}x+y≤4\\ y-x≥0\\ x-1≥0\end{array}\right.$,则目标函数z=3x-y的最大值为4,最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.化简:$\frac{tan(2π-α)cos(\frac{3π}{2}-α)cos(6π-α)}{tan(π-α)sin(α+\frac{3π}{2})cos(α+\frac{3π}{2})}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“对任意x∈R,都有|x|≥0”的否定为(  )
A.对任意x∈R,都有|x|<0B.不存在x∈R,使得|x|<0
C.存在x0∈R,都有|x0|≥0D.存在x0∈R,都有|x0|<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设x,y满足$\left\{\begin{array}{l}{x≥1}\\{x-2y+4≥0}\\{y≥x}\end{array}\right.$,则z=x+2y的最小值等于(  )
A.-3B.3C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某班对喜爱打篮球是否与性别有关进行了调查,以本班的50人为对象进行问卷调查得到了如下的列联表:
  喜爱打篮球 不喜爱打篮球 合计
 男生  5 
 女生 10  
 合计   50
已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(1)请将上面的列联表补充完整;
(2)已知不喜爱打篮球的5位男生中,A1,A2,A3喜欢踢足球,B1,B2喜欢打乒乓球,现再从喜欢踢足球、喜欢打乒乓球的男生中各选出1名同学进行其他方面的调查,求A1和B1至少有一个被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$y=5co{s}(2x+\frac{π}{6})$图象的一条对称轴方程是(  )
A.$x=\frac{π}{12}$B.$x=\frac{π}{6}$C.$x=\frac{5π}{12}$D.$x=\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求图中所示阴影部分的面积.

查看答案和解析>>

同步练习册答案