精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax-bxlnx,其图象经过点(1,1),且在点(e,f(e))处的切线斜率为3(e为自然对数的底数).
(1)求实数a、b的值;
(2)若k∈Z,且k<
f(x)
x-1
对任意x>1恒成立,求k的最大值;
(3)证明:2ln2+3ln3+…+nlnn>(n-1)2(n∈N*,n>1).
考点:利用导数求闭区间上函数的最值,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(1)图象经过点(1,1),且在点(e,f(e))处的切线斜率为3,求出f(x)导函数,然后代入求值;
(2)求出f(x)导函数后,构造设h(x)=x-2-lnx,判断h(x)的单调性,求出最值;
(3)要证明:2ln2+3ln3+…+nlnn>(n-1)2(n∈N*,n>1),只要求出x+xlnx>3x-3,问题就能解决.
解答: 解:(1)∵f(1)=1,
∴a=1,
∵f(x)=x-bxlnx,
∴f'(x)=1-b(1+lnx),
依题意f'(e)=1-b(1+lne)=3,
∴b=-1,
(2)由(1)知:f(x)=x+xlnx
当x>1时,设g(x)=
f(x)
x-1
=
x+xlnx
x-1

g′(x)=
x-2-lnx
(x-1)2

设h(x)=x-2-lnx,
h′(x)=1-
1
x
>0
,h(x)在(1,+∞)上是增函数
∵h(3)=1-ln3<0,h(4)=2-ln4>0,
∴存在x0∈(3,4),使h(x0)=0,
当x∈(1,x0)时,h(x)<0,g'(x)<0,即g(x)在(1,x0)上为减函数;
同理g(x)在(x0,+∞)上为增函数,从而g(x)的最小值为g(x0)=
x0+x0lnx0
x0-1
=x0

∴k<x0∈(3,4),k的最大值为3,
(3)由(2)知,当x>1时,
f(x)
x-1
>3

∴f(x)>3x-3,
即x+xlnx>3x-3,
xlnx>2x-3
∴2ln2+3ln3+…+nlnn>(2×2-3)+(2×3-3)+…+(2n-3)=2(2+3+…+n)-3(n-1)=
(n-1)
2
(2+n)-3n+3
=n2-2n+1=(n-1)2
点评:本题主要考查了函数的极值和导数之间的关系,以及根的存在性定理的应用,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若“x2-x-6>0”是“x<m”的必要不充分条件,则m的最大值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆O:x2+y2=4内一定点Q(1,0),过点Q作倾斜角不为0°的直线L交圆O于A、B两点.
(1)若
AQ
=2
QB
,求直线L的方程;
(2)试证在x轴上存在一定点M,使得MQ平分∠AMB,并求出定点M的坐标;
(3)对于(2)中的点M,若∠AMB=60°,求△AMB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一圆过P(4,-2)、Q(-1,3)两点,且在y轴上截得的线段长为4
3
,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设两圆C1:(x-
2
2+y2=1和C2:x2+y2+2
2
x=0的圆心分别为C1、C2,G1、G2分别是圆C1、C2上的点,M是动点,且|MC1|+|MC2|=4
(1)求动点M的轨迹L的方程;
(2)设轨迹H与y轴的一个交点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l的对称点落在轨迹L上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点E(-
1
2
,0),点F是圆(x-
1
2
2+y2=4上的动点,线段EF的垂直平分线交FM于点P,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x.
(1)若圆心在抛物线y2=4x上的动圆,大小随位置而变化,但总是与直线x+1=0相切,求所有的圆都经过的定点坐标;
(2)抛物线y2=4x的焦点为F,若过F点的直线与抛物线相交于M,N两点,若
FM
=-4
FN
,求直线MN的斜率;
(3)若过F点且相互垂直的两条直线l1,l2,抛物线与l1交于点P1,P2,与l2交于点Q1,Q2.证明:无论如何取直线l1,l2,都有
1
|P1P2|
+
1
|Q1Q2|
为一常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在原点,焦点在x轴上,离心率为
2
2
,它的一个焦点恰好与抛物线y2=4x的焦点重合.
(1)求椭圆C的方程;
(2)设椭圆的上顶点为A,过点A作椭圆C的两条动弦AB,AC,若直线AB,AC斜率之积为
1
4
,直线BC是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某选手欲参加“开心辞典”节目,但必须通过一项包含5道试题的达标测试.测试规定:对于提供的5道试题,参加者答对3道题即可通过.为节省测试时间,同时规定:若答题不足5道已通过,则停止答题,若答题不足5道,但已确定不能通过,也停止答题.假设该选手答对每道题的概率均为
2
3
,且各题对错互不影响.
(Ⅰ)求该选手恰好答完4道题就通过点的概率;
(Ⅱ)设在一次测试中该选手答题数位ξ,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案