已知
为函数
图象上一点,
为坐标原点,记直线
的斜率
.
(1)若函数
在区间
上存在极值,求实数
的取值范围;
(2)当
时,不等式
恒成立,求实数
的取值范围;
(3)求证:![]()
(1)实数
的取值范围是
;(2)实数
的取值范围是
;(3)详见解析.
解析试题分析:(1)先利用导数求出函数
的解析式,并利用导数求出函数
的极值点,并将极值点限制在区间
内,得出有关
的不等式,求解出实数
的取值范围;(2)利用参数分离法将问题
在区间
上恒成立转化为不等式
在区间
上恒成立,构造新函数
,从而将问题转化为
,借助导数求函数
的最小值,从而得到实数
的取值范围;(3)取
,由(2)中的结论
,即
在
上恒成立,从而得到
在
上恒成立,,令
,代入上述不等式得到
,结合累加法即可证明不等式
.
试题解析:(1)由题意
,
1分
所以
2分
当
时,
;当
时,
.
所以
在
上单调递增,在
上单调递减,
故
在
处取得极大值. 3分
因为函数
在区间
(其中
)上存在极值,
所以
,得
.即实数
的取值范围是
. 4分
(2)由
得
,令
,
则
. 6分
令
,则
,
因为
所以
,故
在
上单调递增. 7分
所以
,从而![]()
在
上单调递增, ![]()
所以实数
的取值范围是
. 9分
(3)由(2) 知
恒成立,
即
11分
令
则
, 12分
所以
,
科目:高中数学 来源: 题型:解答题
已知函数
,
且![]()
的图象在它们与坐标轴交点处的切线互相平行.
(1)求
的值;
(2)若存在
使不等式
成立,求实数
的取值范围;
(3)对于函数
与
公共定义域内的任意实数
,我们把![]()
的值称为两函数在
处的偏差,求证:函数
与
在其公共定义域内的所有偏差都大于2
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数![]()
(1)当
时,求函数
的单调区间;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.
,试问函数
在
上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知
,函数
.
(1)当
时,写出函数
的单调递增区间;
(2)当
时,求函数
在区间[1,2]上的最小值;
(3)设
,函数
在(m,n)上既有最大值又有最小值,请分别求出m,n的取值范围(用a表示).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
.
(1)当
时,求函数
的极值;
(2)求函数
的单调区间;
(3)是否存在实数
,使函数
在
上有唯一的零点,若有,请求出
的范围;若没有,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com