精英家教网 > 高中数学 > 题目详情

已知函数的图象在它们与坐标轴交点处的切线互相平行.
(1)求的值;
(2)若存在使不等式成立,求实数的取值范围;
(3)对于函数公共定义域内的任意实数,我们把的值称为两函数在处的偏差,求证:函数在其公共定义域内的所有偏差都大于2

(1);(2)的取值范围是;(3)见解析.

解析试题分析:(1)先求出的图象在它们与坐标轴交点,然后利用在此点处导数相等求解;(2)将题意转化为时有解,即,利用导数求出的最小值即可求得的取值范围;(3)两种方法;法一,公共定义域为,令利用导数求出的最小值,再利用基本不等式可得结果.法二,当时,先证再证,两式相加即得.
试题解析:(1)的图像与轴的交点为
的图像与轴的交点为,又,3分
(2)存在使不等式成立,即时有解,
,因为,又由均值不等式得上单调递增,所以
故所求的取值范围是                    8分
(方法一)(3)公共定义域为,令
单调递增,又
内存在唯一零点
所以
所以故结论成立                                 12分
(方法二推荐)当时,先证再证,两式相加即得
证明方法构造函数所以单调增,
所以,同理可以证明,相加即得.
考点:导数的几何意义、利用导数求函数最值、利用导数求函数单调区间、基本不等式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数单调递增区间;
(2)若存在,使得是自然对数的底数),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像过原点,且在处的切线为直线
(Ⅰ)求函数的解析式;
(Ⅱ)求函数在区间上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数,数列,满足0<<1, ,数列满足
(Ⅰ)求函数的单调区间;
(Ⅱ)求证:0<<1;
(Ⅲ)若,则当n≥2时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点的双曲线的一个焦点是,一条渐近线的方程是.
(1)求双曲线的方程;(2)若以为斜率的直线与双曲线相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间和极值;
(2)若函数在[1,4]上是减函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(Ⅰ)求函数上的最小值;
(Ⅱ)对一切恒成立,求实数的取值范围;
(Ⅲ)证明:对一切,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为函数图象上一点,为坐标原点,记直线的斜率
(1)若函数在区间上存在极值,求实数的取值范围;
(2)当时,不等式恒成立,求实数的取值范围;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x-ax+(a-1)
(1)讨论函数的单调性;(2)若,设
(ⅰ)求证g(x)为单调递增函数;
(ⅱ)求证对任意x,x,xx,有

查看答案和解析>>

同步练习册答案