精英家教网 > 高中数学 > 题目详情

函数,数列,满足0<<1, ,数列满足
(Ⅰ)求函数的单调区间;
(Ⅱ)求证:0<<1;
(Ⅲ)若,则当n≥2时,求证:

(Ⅰ)函数的递减区间(-1,0),递增区间(0,+);(Ⅱ)详见解析;(Ⅲ)详见解析.

解析试题分析:(Ⅰ)求函数的单调区间,首先确定定义域,可通过单调性的定义,或求导确定单调区间,由于,含有对数函数,可通过求导来确定单调区间,对函数求导得,由此令,解出就能求出函数的单调区间;(Ⅱ)求证:0<<1,可先证0<<1,,再证数列单调递减,可先证0<<1,若能求出通项公式,利用通项公式来证,由已知0<<1, ,显然无法求通项公式,可考虑利用数学归纳法来证,结合函数的单调性易证,证数列单调递减,可用作差比较法<0证得,从而的结论;(Ⅲ)若,则当n≥2时,求证:,关键是求的通项公式,由,所以,可得,只要证明,,即证,因为,则,由此可得,所以,即证得.
试题解析:(Ⅰ)利用导数可求得函数的递减区间(-1,0),递增区间(0,+
(Ⅱ)先用数学归纳法证明0<<1,.
①当n=1时,由已知得结论成立.②假设时,0<<1成立.则当时由(1)可得函数上是增函数,所以=1-<1,所以0<<1,即n=k+1时命题成立,由①②可得0<<1,成立.
<0,所以成立.
所以0<<1
(Ⅲ)因为,所以
所以……①
因为,所以
因为,当时,
所以……②
由①②两式可知
考点:函数与导数,函数单调性,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中
(Ⅰ)当,求函数的单调递增区间;
(Ⅱ)若时,函数有极值,求函数图象的对称中心的坐标;
(Ⅲ)设函数 (是自然对数的底数),是否存在a使上为减函数,若存在,求实数a的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若是增函数,求的取值范围;
(2)已知,对于函数图象上任意不同两点,,其中,直线的斜率为,记,若求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=alnx+(a≠0)在(0,)内有极值.
(I)求实数a的取值范围;
(II)若x1∈(0,),x2∈(2,+∞)且a∈[,2]时,求证:f(x2)﹣f(x1)≥ln2+

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某厂生产产品x件的总成本(万元),已知产品单价P(万元)与产品件数x满足:,生产100件这样的产品单价为50万元,产量定为多少件时总利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象如图,直线在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为.

(1)求的解析式;
(2)若常数,求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象在它们与坐标轴交点处的切线互相平行.
(1)求的值;
(2)若存在使不等式成立,求实数的取值范围;
(3)对于函数公共定义域内的任意实数,我们把的值称为两函数在处的偏差,求证:函数在其公共定义域内的所有偏差都大于2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.
(Ⅰ)若对一切恒成立,求的取值范围;
(Ⅱ)设,且是曲线上任意两点,若对任意的,直线AB的斜率恒大于常数,求的取值范围;
(Ⅲ)求证:.

查看答案和解析>>

同步练习册答案