精英家教网 > 高中数学 > 题目详情

某厂生产产品x件的总成本(万元),已知产品单价P(万元)与产品件数x满足:,生产100件这样的产品单价为50万元,产量定为多少件时总利润最大?

件时,总利润最大.

解析试题分析:
本题首先根据生产100件这样的产品单价为50万元,代入可求得参数,然后求得,从而可得总利润然后根据导数求得最大值.
试题解析:
由题意知:
所以
所以总利润
,则有
所以当件时,总利润最大
考点:导数求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若曲线处的切线互相平行,求的值;
(Ⅱ)求的单调区间;
(Ⅲ)设,若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数。(为常数,
(Ⅰ)若是函数的一个极值点,求的值;
(Ⅱ)求证:当时,上是增函数;
(Ⅲ)若对任意的,总存在,使不等式成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图像过原点,且在处的切线为直线
(Ⅰ)求函数的解析式;
(Ⅱ)求函数在区间上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数在点处的切线与圆相切,求的值;
(2)当时,函数的图像恒在坐标轴轴的上方,试求出的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数,数列,满足0<<1, ,数列满足
(Ⅰ)求函数的单调区间;
(Ⅱ)求证:0<<1;
(Ⅲ)若,则当n≥2时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中心在原点的双曲线的一个焦点是,一条渐近线的方程是.
(1)求双曲线的方程;(2)若以为斜率的直线与双曲线相交于两个不同的点,且线段的垂直平分线与两坐标轴围成的三角形的面积为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(Ⅰ)求函数上的最小值;
(Ⅱ)对一切恒成立,求实数的取值范围;
(Ⅲ)证明:对一切,都有成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,点A、B为函数的相邻两个零点,AB=π.
(1)求的值;
(2)若,求的值;
(3)求在区间上的单调递减区间.

查看答案和解析>>

同步练习册答案