已知函数
的图象如图,直线
在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为
.![]()
(1)求
的解析式;
(2)若常数
,求函数
在区间
上的最大值.
(1)
;
(2)当
时,
;当
时,
.
解析试题分析:(1)由条件知,
科目:高中数学
来源:
题型:解答题
设函数
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
,
,代入可得
、
.再用定积分表示出所围成的区域(阴影)面积,由面积为
解得
,从而得到
的解析式;(2)由(1)知
,再列出
,的取值变化情况,又
,结合图像即可得当
时,
;当
时,
.
试题解析:(1)由
得
, 2分
.由
得
, 4分
∴
,则易知图中所围成的区域(阴影)面积为![]()
从而得
,∴
. 8分
(2)由(1)知
.
的取值变化情况如下: ![]()
![]()
![]()
![]()
2 ![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
单调
递增极大值 ![]()
![]()
![]()
课时全练讲练测达标100分系列答案
点金训练精讲巧练系列答案
火线100天中考滚动复习法系列答案
新课堂同步学习与探究系列答案
优等生单元期末冲刺100分系列答案
绿色指标自我提升系列答案
支点系列答案
新课程资源与学案系列答案
初中复习与能力训练系列答案
习题精选系列答案
,其中
.
(1)若
,求
在
的最小值;
(2)如果
在定义域内既有极大值又有极小值,求实数
的取值范围;
(3)是否存在最小的正整数
,使得当
时,不等式
恒成立.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号