已知函数的图象如图,直线在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为.
(1)求的解析式;
(2)若常数,求函数在区间上的最大值.
(1);
(2)当时,;当时,.
解析试题分析:(1)由条件知,,,代入可得、.再用定积分表示出所围成的区域(阴影)面积,由面积为解得,从而得到的解析式;(2)由(1)知,再列出,的取值变化情况,又,结合图像即可得当时,;当时,.
科目:高中数学
来源:
题型:解答题
设函数,其中.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
试题解析:(1)由得, 2分
.由得, 4分
∴,则易知图中所围成的区域(阴影)面积为
从而得,∴. 8分
(2)由(1)知.
的取值变化情况如下: 2 单调
递增极大值
(1)若,求在的最小值;
(2)如果在定义域内既有极大值又有极小值,求实数的取值范围;
(3)是否存在最小的正整数,使得当时,不等式恒成立.
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号