【题目】在学习强国活动中,某市图书馆的科技类图书和时政类图书是市民借阅的热门图书.为了丰富图书资源,现对已借阅了科技类图书的市民(以下简称为“问卷市民”)进行随机问卷调查,若不借阅时政类图书记1分,若借阅时政类图书记2分,每位市民选择是否借阅时政类图书的概率均为
,市民之间选择意愿相互独立.
(1)从问卷市民中随机抽取4人,记总得分为随机变量
,求
的分布列和数学期望;
(2)(i)若从问卷市民中随机抽取
人,记总分恰为
分的概率为
,求数列
的前10项和;
(ⅱ)在对所有问卷市民进行随机问卷调查过程中,记已调查过的累计得分恰为
分的概率为
(比如:
表示累计得分为1分的概率,
表示累计得分为2分的概率,
),试探求
与
之间的关系,并求数列
的通项公式.
科目:高中数学 来源: 题型:
【题目】由于研究性学习的需要,中学生李华持续收集了手机“微信运动”团队中特定20名成员每天行走的步数,其中某一天的数据记录如下:
5860 6520 7326 6798 7325 8430 8215 7453 7446 6754
7638 6834 6460 6830 9860 8753 9450 9860 7290 7850
对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:
步数分组统计表(设步数为
)
组别 | 步数分组 | 频数 |
|
| 2 |
|
| 10 |
|
|
|
|
| 2 |
|
|
|
(Ⅰ)写出
的值,并回答这20名“微信运动”团队成员一天行走步数的中位数落在哪个组别;
(Ⅱ)记
组步数数据的平均数与方差分别为
,
,
组步数数据的平均数与方差分别为
,
,试分别比较
与以
,
与
的大小;(只需写出结论)
(Ⅲ)从上述
两个组别的数据中任取2个数据,记这2个数据步数差的绝对值为
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列
的前
项和为
,
,
.
(1)求数列
的通项公式;
(2)设数列
满足:
对于任意
,都有
成立.
①求数列
的通项公式;
②设数列
,问:数列
中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等腰梯形
中(如图1),
,
,
为线段
的中点,
、
为线段
上的点,
,现将四边形
沿
折起(如图2)
![]()
(1)求证:
平面
;
(2)在图2中,若
,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
,
、
分别是椭圆
长轴的左、右端点,
为椭圆上的动点.
(1)求
的最大值,并证明你的结论;
(2)设直线
的斜率为
,且
,求直线
的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
:
(
为参数,
),曲线
:
(
为参数),
与
相切于点
,以坐标原点为极点,
轴的非负半轴为极轴建立极坐标系.
(1)求
的极坐标方程及点
的极坐标;
(2)已知直线
:
与圆
:
交于
,
两点,记
的面积为
,
的面积为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据国家统计局数据,1978年至2018年我国GDP总量从0.37万亿元跃升至90万亿元,实际增长了242倍多,综合国力大幅提升.
![]()
将年份1978,1988,1998,2008,2018分别用1,2,3,4,5代替,并表示为
;
表示全国GDP总量,表中
,
.
|
|
|
|
|
|
3 | 26.474 | 1.903 | 10 | 209.76 | 14.05 |
(1)根据数据及统计图表,判断
与
(其中
为自然对数的底数)哪一个更适宜作为全国GDP总量
关于
的回归方程类型?(给出判断即可,不必说明理由),并求出
关于
的回归方程.
(2)使用参考数据,估计2020年的全国GDP总量.
线性回归方程
中斜率和截距的最小二乘法估计公式分别为:
,
.
参考数据:
| 4 | 5 | 6 | 7 | 8 |
| 55 | 148 | 403 | 1097 | 2981 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com