精英家教网 > 高中数学 > 题目详情
如图:已知直棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=
6
,M是CC1的中点.求证:AB1⊥A1M.
精英家教网
证明:连接AC1
∵∠ACB=90°,∠BAC=30°,BC=1,AA1=
6

A1M=
3+(
6
2
)
2
=
3
3
2

Rt△A1C1M中,tan∠A1MC1=
A1C1
MC1
=
3
6
2
=
2

Rt△AA1C1中,tan∠AC1A1=
AA1
A1C1
=
6
3
=
2

∴tan∠MA1C1=tan∠AC1A1 即∠AC1A1=∠A1MC1     
∴A1M⊥AC1
∵B1C1⊥A1C1,B1C1⊥CC1且AC1∩CC1=C1
∴B1C1⊥平面AA1C1且MA1?面AA1C1
∴B1C1⊥MA1,又AC1∩B1C1是=C1
根据线面垂直的判定定理可知MA1⊥平面AB1C1
∴AB1⊥A1M
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知直棱柱ABC-A1B1C1中,AB=AC=5,BC=BB1=8,M,N分别为棱BC,CC1的中点.
(1)求证:BN⊥AB1
(2)求四棱锥A-MB1C1C与三棱柱ABC-A1B1C1的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4,E、F分别是棱CC1、AB中点.
(1)判断直线CF和平面AEB1的位置关系,并加以证明;
(2)求四棱锥A-ECBB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知直棱柱ABC-A1B1C1中,AB=AC=5,BC=BB1=8,M,N分别为棱BC,CC1的中点.
(1)求证:BN⊥AB1
(2)求四棱锥A-MB1C1C与三棱柱ABC-A1B1C1的体积比.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省洛阳市高三(上)期中数学试卷(文科)(解析版) 题型:解答题

如图,已知直棱柱ABC-A1B1C1中,AB=AC=5,BC=BB1=8,M,N分别为棱BC,CC1的中点.
(1)求证:BN⊥AB1
(2)求四棱锥A-MB1C1C与三棱柱ABC-A1B1C1的体积比.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省洛阳市高三(上)期中数学试卷(文科)(解析版) 题型:解答题

如图,已知直棱柱ABC-A1B1C1中,AB=AC=5,BC=BB1=8,M,N分别为棱BC,CC1的中点.
(1)求证:BN⊥AB1
(2)求四棱锥A-MB1C1C与三棱柱ABC-A1B1C1的体积比.

查看答案和解析>>

同步练习册答案