【题目】如图,在直四棱柱中,底面是边长为2的正方形, 分别为线段, 的中点.
(1)求证: ||平面;
(2)四棱柱的外接球的表面积为,求异面直线与所成的角的大小.
【答案】(1)见解析;(2)
【解析】试题分析:(1)连接BD1,由中位线定理证明EF∥D1B,由线面平行的判定定理证明EF∥平面ABC1D1;
(2)由(1)和异面直线所成角的定义,得异面直线EF与BC所成的角是∠D1BC,由题意和球的表面积公式求出外接球的半径,由勾股定理求出侧棱AA1的长,由直四棱柱的结构特征和线面垂直的定义,判断出BC⊥CD1,在RT△CC1D1中求出tan∠D1BC,求出∠D1BC可得答案.
试题解析:
(1)连接,在中, 分别为线段的中点,∴为中位线,
∴,而面, 面,∴平面.
(2)由(1)知,故即为异面直线与所成的角.
∵四棱柱的外接球的表面积为,
∴四棱柱的外接球的半径,
设,则,解得,
在直四棱柱中,∵平面, 平面,
∴,在中, ,
∴,
∴异面直线与所成的角为.
科目:高中数学 来源: 题型:
【题目】已知两个定点,动点满足.设动点的轨迹为曲线,直线.
(1)求曲线的轨迹方程;
(2)若与曲线交于不同的两点,且(为坐标原点),求直线的斜率;
(3)若是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M,N分别是A1B,B1C1的中点.
(1)求证:MN⊥平面A1BC;
(2)求直线BC1和平面A1BC所成的角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数的定义域为,值域为,如果存在函数,使得函数的值域仍是,那么称是函数的一个等值域变换.
(1)判断下列函数是不是函数的一个等值域变换?说明你的理由;
①;
②.
(2)设的定义域为,已知是的一个等值域变换,且函数的定义域为,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如下表:
很喜爱 | 喜爱 | 一般 | 不喜爱 |
2435 | 4567 | 3926 | 1072 |
电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应当怎样进行抽样?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(2x+b)ex , F(x)=bx﹣lnx,b∈R.
(1)若b<0,且存在区间M,使f(x)和F(x)在区间M上具有相同的单调性,求b的取值范围;
(2)若F(x+1)>b对任意x∈(0,+∞)恒成立,求b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com