精英家教网 > 高中数学 > 题目详情

【题目】如图,在直四棱柱中,底面是边长为2的正方形, 分别为线段 的中点.

(1)求证: ||平面

(2)四棱柱的外接球的表面积为,求异面直线所成的角的大小.

【答案】(1)见解析;(2)

【解析】试题分析:(1)连接BD1,由中位线定理证明EFD1B,由线面平行的判定定理证明EF∥平面ABC1D1
(2)由(1)和异面直线所成角的定义,得异面直线EFBC所成的角是∠D1BC,由题意和球的表面积公式求出外接球的半径,由勾股定理求出侧棱AA1的长,由直四棱柱的结构特征和线面垂直的定义,判断出BCCD1,在RTCC1D1中求出tanD1BC,求出∠D1BC可得答案.

试题解析:

(1)连接,在中, 分别为线段的中点,∴为中位线,

,而 ,∴平面.

(2)由(1)知,故即为异面直线所成的角.

∵四棱柱的外接球的表面积为

∴四棱柱的外接球的半径

,则,解得

在直四棱柱中,∵平面 平面

,在中,

∴异面直线所成的角为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是偶函数,且.

(1)求的值;

(2)求函数上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是两条不同的直线, 是三个不同的平面,下面说法正确的是

A. B.

C. D. ,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个定点,动点满足.设动点的轨迹为曲线,直线.

(1)求曲线的轨迹方程;

(2)若与曲线交于不同的两点,且为坐标原点),求直线的斜率;

(3)若是直线上的动点,过作曲线的两条切线,切点为,探究:直线是否过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1) 判断函数的单调性并给出证明;

(2)若存在实数使函数是奇函数,求

(3)对于(2)中的,若,当时恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M,N分别是A1B,B1C1的中点.

(1)求证:MN⊥平面A1BC;

(2)求直线BC1和平面A1BC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,值域为,如果存在函数,使得函数的值域仍是,那么称是函数的一个等值域变换.

(1)判断下列函数是不是函数的一个等值域变换?说明你的理由;

.

(2)设的定义域为,已知的一个等值域变换,且函数的定义域为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如下表:

很喜爱

喜爱

一般

不喜爱

2435

4567

3926

1072

电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应当怎样进行抽样?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2x+b)ex , F(x)=bx﹣lnx,b∈R.
(1)若b<0,且存在区间M,使f(x)和F(x)在区间M上具有相同的单调性,求b的取值范围;
(2)若F(x+1)>b对任意x∈(0,+∞)恒成立,求b的取值范围.

查看答案和解析>>

同步练习册答案