精英家教网 > 高中数学 > 题目详情
19.已知正数a,b满足$\frac{1}{a}$+$\frac{9}{b}$=$\sqrt{ab}$-5,则ab的最小值为36.

分析 正数a,b满足$\frac{1}{a}$+$\frac{9}{b}$=$\sqrt{ab}$-5,$\sqrt{ab}$-5≥$2\sqrt{\frac{1}{a}×\frac{9}{b}}$,化为:$(\sqrt{ab})^{2}$-5$\sqrt{ab}$-6≥0,解出即可得出.

解答 解:∵正数a,b满足$\frac{1}{a}$+$\frac{9}{b}$=$\sqrt{ab}$-5,
∴$\sqrt{ab}$-5≥$2\sqrt{\frac{1}{a}×\frac{9}{b}}$,化为:$(\sqrt{ab})^{2}$-5$\sqrt{ab}$-6≥0,
解得$\sqrt{ab}$≥6,当且仅当$\frac{1}{a}$=$\frac{9}{b}$,$\frac{1}{a}$+$\frac{9}{b}$=$\sqrt{ab}$-5,即a=2,b=18时取等号.
解得ab≥36.
故答案为:36.

点评 本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=xex-mx+m,若f(x)<0的解集为(a,b),其中b<0;不等式在(a,b)中有且只有一个整数解,则实数m的取值范围是(  )
A.$(\frac{2}{{3{e^2}}},\frac{1}{2e})$B.$(\frac{2}{{3{e^2}}},\frac{1}{e})$C.$[\frac{2}{{3{e^2}}},\frac{1}{2e})$D.$[\frac{2}{{3{e^2}}},\frac{1}{e})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=cosxsin(x-$\frac{π}{6}}$)+cos2x+$\frac{1}{4}$,x∈R.
(1)求f(x)单调递增区间;
(2)求f(x)在[-$\frac{π}{12}$,$\frac{5π}{12}}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3,D、E分别是BC、AB的中点,F是CC1上一点,且CF=2C1F.
(1)求证:C1E∥平面ADF;
(2)若BC=2,求证:B1F⊥平面ADF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设实数x,y满足$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}\right.$,则3x+2y的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知曲线C的极坐标方程为ρsin(θ+$\frac{π}{3}$)=3,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,求曲线C的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=ln(x+1)的定义域是(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设p:实数x满足x2-4ax+3a2<0,其中a>0; q:实数x满足$\frac{x-3}{x-2}$<0.
(1)若a=1,且p∨q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知AB为圆O的直径,M为圆O的弦CD上一动点,AB=8,CD=6,则$\overrightarrow{MA}$•$\overrightarrow{MB}$的取值范围是[-9,0].

查看答案和解析>>

同步练习册答案