精英家教网 > 高中数学 > 题目详情
4.正三角形的一个顶点恰好为抛物线y2=2px(p>0)的顶点,另两个顶点在抛物线上,则此三角形的边长为4$\sqrt{3}$p.

分析 根据抛物线的对称性可知,若正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px(p>0)上,则另外两个定点关于x轴对称,就可的直线OA的倾斜角,据此求出直线OA的方程,与抛物线方程联立解出A点坐标,就可求出正三角形的边长.

解答 解:∵抛物线y2=2px关于x轴对称,
∴若正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px(p>0)上,
则A,B点关于x轴对称,
∴直线OA倾斜角为30°,斜率为$\frac{\sqrt{3}}{3}$
∴直线OA方程为y=$\frac{\sqrt{3}}{3}$x,
代入抛物线方程,可得A(6p,2$\sqrt{3}$p),则B(6p,-2$\sqrt{3}$p),
∴|AB|=4$\sqrt{3}$p
∴这个正三角形的边长为4$\sqrt{3}$p
故答案为:4$\sqrt{3}$p.

点评 本题主要考查了抛物线的对称性,直线方程的点斜式,以及曲线交点的求法,属于圆锥曲线的综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知点A(-2,-2),B(2,0),C(1,3),D(x,2),若$\overrightarrow{AB}$∥$\overrightarrow{CD}$,则x=(  )
A.3B.$\frac{3}{2}$C.$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若函数f(x)在(-∞,0)和(0,+∞)上均为减函数,且f(-2)=f(2)=0,求不等式f(x-1)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.探究性问题:$\frac{1}{1×2}=\frac{1}{1}-\frac{1}{2}$,$\frac{1}{2×3}=\frac{1}{2}-\frac{1}{3}$,$\frac{1}{3×4}=\frac{1}{3}-\frac{1}{4}$.则$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
试用上面的规律解决下面的问题:
(1)计算$\frac{1}{(x+1)(x+2)}+\frac{1}{(x+2)(x+3)}+\frac{1}{(x+3)(x+4)}$;
(2)已知$\sqrt{a-1}$+(ab-2)2=0,求$\frac{1}{ab}+\frac{1}{(a+1)(b+1)}+\frac{1}{(a+2)(b+2)}$+…+$\frac{1}{(a+2016)(b+2016)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若平面上三点A、B、C满足($\overrightarrow{BC}$+$\overrightarrow{BA}$)•$\overrightarrow{AC}$=0,则△ABC的形状为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(sinx)=3-cos2x,则f(cosx)=(  )
A.3-cos2xB.3-sin2xC.3+cos2xD.3+sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设X~B(10,0.8)则k=(  )时,P(x=k)最大.
A.8B.9C.8或9D.7或8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某程序框图如图所示,现将输出(x,y)值依次记为:(x1,y1),(x2,y2),…,(xn,yn)…若程序运行中输出的一个数组是(x,-10)则数组中的x=(  )
A.32B.24C.18D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.4×5×6×…×(n-1)×n=(  )
A.Cn4B.n!-3!C.Ann-3D.Cnn-3

查看答案和解析>>

同步练习册答案