分析 (I)利用线面、面面垂直的判定及其性质定理即可证明;
(2)如图所示,连接OE,OC.由(1)可知:BD⊥OC,BD⊥OE,可得∠COE是二面角E-BD-C的平面角.利用直角三角形的边角关系即可得出.
解答
(Ⅰ)证明:∵PO⊥底面ABCD,∴PO⊥BD,
又∵AC⊥BD,且AC∩PO=O
∴BD⊥平面PAC,而BD?平面BDE,
∴平面PAC⊥平面BDE.
(2)如图所示,连接OE,OC.
由(1)可知:BD⊥OC,BD⊥OE,
∴∠COE是二面角E-BD-C的平面角.
∵AB=2,∴OC=$\frac{1}{2}$BD=$\sqrt{2}$.
∴OC=OP,
又PO⊥OC,PE=EC,
∴∠COE=45°.
点评 本题考查了线面、面面垂直的判定及其性质定理、空间角、直角三角形的边角关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-3,3) | B. | {-3,3} | C. | {x|x≠±3} | D. | (-∞,-3)∪(3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 8 | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\sqrt{3},0)$,$(-\sqrt{3},0)$ | B. | (1,0),(-1,0) | C. | $(-\frac{{\sqrt{6}}}{2},0)$,$(\frac{{\sqrt{6}}}{2},0)$ | D. | $(-\frac{{\sqrt{2}}}{2},0)$,$(\frac{{\sqrt{2}}}{2},0)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{c}$ | B. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{c}$ | C. | $\frac{1}{6}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$+$\frac{1}{3}$$\overrightarrow{c}$ | D. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{1}{6}$$\overrightarrow{b}$+$\frac{1}{6}$$\overrightarrow{c}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com