精英家教网 > 高中数学 > 题目详情
5.设{an}是等差数列,a1+a3+a5=9,a1=9.则这个数列的公差等于(  )
A.1B.2C.-3D.-4

分析 设出等差数列的公差,结合已知列式求得答案.

解答 解:设等差数列{an}的公差为d,
由a1+a3+a5=9,得3a1+6d=9,又a1=9,
∴6d=-18,得d=-3.
故选:C.

点评 本题考查等差数列的通项公式,考查等差数列的性质,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|$\sqrt{2x-1}$>1},则∁RA=(  )
A.{x|x>1}B.{x|x≥$\frac{1}{2}$}C.{x|x≤1}D.{x|x<$\frac{1}{2}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.与直线 $y=\frac{1}{2}x+1$垂直,且过(2,0)点的直线方程是(  )
A.y=-2x+4B.$y=\frac{1}{2}x-1$C.y=-2x-4D.$y=\frac{1}{2}x-4$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.对于曲线C:f(x,y)=0,若存在非负实数M和m,使得曲线C上任意一点P(x,y),m≤|OP|≤M恒成立(其中O为坐标原点),则称曲线C为有界曲线,且称M的最小值M0为曲线C的外确界,m的最大值m0为曲线C的内确界.
(1)写出曲线x+y=1(0<x<4)的外确界M0与内确界m0
(2)曲线y2=4x与曲线(x-1)2+y2=4是否为有界曲线?若是,求出其外确界与内确界;若不是,请说明理由;
(3)已知曲线C上任意一点P(x,y)到定点F1(-1,0),F2(1,0)的距离之积为常数a(a>0),求曲线C的外确界与内确界.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(3k,3),$\overrightarrow{b}$=(-6,k-7)
(1)若$\overrightarrow{a}$⊥$\overrightarrow{b}$,求k的值;
(2)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求|$\overrightarrow{a}$-2$\overrightarrow{b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的前n项和为Sn,且满足Sn=an+n2-1(n∈N*).
(1)求{an}的通项公式;
(2)求证:$\frac{1}{{S}_{1}}+\frac{1}{{S}_{2}}+…+\frac{1}{{S}_{n}}<\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)是定义在R上的不恒为0的函数,若对于任意的实数a、b都满足f(ab)=af(b)+bf(a),则函数f(x)(  )
A.是奇函数B.是偶函数
C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若a>b,ab=1,则$M=\frac{{{a^2}+{b^2}}}{a-b}$的取值范围是[2$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}中,a1=1,a2=6,an+2=an+1-an,则a2016=-5.

查看答案和解析>>

同步练习册答案