精英家教网 > 高中数学 > 题目详情
已知△ABC中,AC=2
2
,BC=2,则cosA的取值范围是(  )
A.(
3
2
,1)
B.[
2
2
,1)
C.(
1
2
3
2
]
D.(0,
2
2
]
∵AC=b=2
2
,BC=a=2,
∴由正弦定理
a
sinA
=
b
sinB
,得
2
sinA
=
2
2
sinB

即sinA=
2
2
sinB

∵a<b,sinB∈(0,1]
∴sinA∈(0,
2
2
],可得锐角A∈[
π
4
,0)
∵余弦函数在(0,π)内为减函数,
∴cosA的取值范围是[
2
2
,1)

故选:B
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,AC=1,∠ABC=
3
,设∠BAC=x,记f(x)=AB.
(Ⅰ)求f(x)的解析式及定义域;
(Ⅱ)D是AB边的中点,若f(x)=
3
3
,求CD长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•闵行区二模)已知△ABC中,AC=2
2
,BC=2,则角A的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,AC=BC=2,∠ACB=120°,D为AB的中点,E,F分别在线段AC,BC上,且EF∥AB,EF交CD于G,把△ADC沿CD折起,如图所示,

(1)求证:E1F∥平面A1BD;
(2)当二面角A1-CD-B为直二面角时,是否存在点F,使得直线A1F与平面BCD所成的角为60°,若存在求CF的长,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,AC=1,∠ABC=
3
.设∠BAC=x,记f(x)=AB.
(Ⅰ)求f(x)的解析式及定义域;
(Ⅱ)设g(x)=6m•f(x)+1,求实数m,使函数g(x)的值域为(1,
3
2
).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)已知△ABC中,AC=1,∠ABC=
3
,设∠BAC=x,并记f(x)=
AB
BC

(1)求函数f(x)的解析式及其定义域;
(2)设函数g(x)=6mf(x)+1,若函数g(x)的值域为(1,
5
4
]
,试求正实数m的值.

查看答案和解析>>

同步练习册答案