精英家教网 > 高中数学 > 题目详情

已知等差数列{an}的公差d=2,Sn表示{an}的前n项和,若数列{sn}是递增数列,则a1的取值范围是________.

(-2,+∞)
分析:Sn可以看作是n的函数,由已知,得出Sn<Sn+1 对于任意的正整数n都成立,转化成a n+1>0 恒成立解决.
解答:若数列{sn}是递增数列,即是说,对于任意的正整数n,都有Sn<Sn+1成立,移向即为a n+1>0,∴a1+2n>0,a1>-2n.只需要a1大于-2n的最大值即可.
当n=1时,-2n取得最大值-2,所以a1>-2,a1的取值范围是(-2,+∞)
故答案为:(-2,+∞)
点评:本题考查数列的函数性质,考查了单调性.由已知,得出a n+1>0是关键,需要良好的运用所学知识方法解决类似问题的迁移能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an},公差d不为零,a1=1,且a2,a5,a14成等比数列;
(1)求数列{an}的通项公式;
(2)设数列{bn}满足bn=an3n-1,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中:a3+a5+a7=9,则a5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足:a5=11,a2+a6=18.
(1)求{an}的通项公式;
(2)若bn=an+q an(q>0),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}满足a2=0,a6+a8=-10
(1)求数列{an}的通项公式;     
(2)求数列{|an|}的前n项和;
(3)求数列{
an2n-1
}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知等差数列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若{an}为递增数列,请根据如图的程序框图,求输出框中S的值(要求写出解答过程).

查看答案和解析>>

同步练习册答案