精英家教网 > 高中数学 > 题目详情
精英家教网已知正四棱柱ABCD-A1B1C1D1底面边长AB=2,侧棱BB1的长为4,过点B作B1C的垂线交侧棱CC1于点E,交线段B1C于点F.以D为原点,DA、DC、DD1所在直线分别为x、y、z轴建立空间直角坐标系D-xyz,如图.
(Ⅰ)求证:A1C⊥平面BED;
(Ⅱ)求A1B与平面BDE所成角的正弦值的大小.
分析:(I)由已知中,正四棱柱ABCD-A1B1C1D1底面边长AB=2,侧棱BB1的长为4,我们易求出正四棱柱中各顶点的坐标,设E(0,2,t),根据BE⊥B1C,我们易由它们的方向向量数量积为0,构造关于t的方程,求出t值,然后根据向量数量为0,向量垂直,对应的线段也垂直,可证得直线A1C与BE,BD均垂直,再由线面垂直的判定定理得到A1C⊥平面BED;
(Ⅱ)由(1)中结论,我们可得
A1C
=(-2,2,-4)
是平面BDE的一个法向量,再求出直线A1B的方向向量,代入向量夹角公式,即可得到A1B与平面BDE所成角的正弦值的大小.
解答:解:(Ⅰ)D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),A1(2,0,4),B1(2,2,4),
C1(0,2,4),D1(0,0,4)
设E(0,2,t),则
BE
=(-2,0,t),
B1C
=(-2,0,-4)

∵BE⊥B1C,
BE
B1C
=4+0-4t=0

∴t=1.
∴E(0,2,1),
BE
=(-2,0,1)

A1C
=(-2,2,-4),
DB
=(2,2,0)

A1C
BE
=4+0-4=0
A1C
DB
=-4+4+0=0

A1C
BD
A1C
BE

A1C
平面BDE.                    
(Ⅱ)由(Ⅰ)知
A1C
=(-2,2,-4)
是平面BDE的一个法向量,
A1B
=(0,2,-4)

cos?
A1C
A1B
>=
A1C
A1B
|
A1C
||
A1B
|
=
20
24
20
=
30
6

∴A1B与平面BDE所成角的正弦值为
30
6
点评:本题考查的知识点是用空间向量求直线与平面的夹角,向量语言表述线面的垂直、平行关系,其中建立空间坐标系,将空间线面的夹角及垂直、平行问题转化为向量夹角问题是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知正四棱柱ABCD-A1B1C1D1的底面边长为1,点E在棱AA1上,A1C∥平面EBD,截面EBD的面积为
2
2

(1)A1C与底面ABCD所成角的大小;
(2)若AC与BD的交点为M,点T在CC1上,且MT⊥BE,求MT的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱柱ABCD-A1B1C1D1的顶点坐标分别为A(0,0,0),B(2,0,O),D(0,2,0),A1(0,0,5),则C1的坐标为
(2,2,5)
(2,2,5)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱柱ABCD-A1B1C1D1的底面ABCD边长为1,高AA1=
2
,它的八个顶点都在同一球面上,那么球的半径是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正四棱柱ABCD-A1B1C1D1与它的侧视图(或称左视图),E是DD1上一点,AE⊥B1C.
(1)求证AE⊥平面B1CD;
(2)求三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州模拟)已知正四棱柱ABCD-A1B1C1D1,AB=BC=1,AA1=2,点E为CC1的中点,点F为BD1的中点.
(Ⅰ)证明:EF⊥BD1
(Ⅱ)求四面体D1-BDE的体积.

查看答案和解析>>

同步练习册答案