精英家教网 > 高中数学 > 题目详情

在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是____________.

 

【解析】∵圆C的方程可化为(x-4)2+y2=1,∴圆C的圆心为(4,0),半径为1.由题意知,直线y=kx-2上至少存在一点A(x0,kx0-2),以该点为圆心,1为半径的圆与圆C有公共点,∴存在x0∈R,使得AC≤1+1成立,即ACmin≤2.

∵ACmin即为点C到直线y=kx-2的距离

≤2,解得0≤k≤.∴k的最大值是.

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第8课时练习卷(解析版) 题型:填空题

已知△ABC外接圆半径R=,且∠ABC=120°,BC=10,边BC在x轴上且y轴垂直平分BC边,则过点A且以B、C为焦点的双曲线方程为______________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第6课时练习卷(解析版) 题型:填空题

若点O和点F分别为椭圆=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第6课时练习卷(解析版) 题型:填空题

已知△ABC的顶点B、C在椭圆+y2=1上,顶点A与椭圆的焦点F1重合,且椭圆的另外一个焦点F2在BC边上,则△ABC的周长是________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:解答题

如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M、N均在直线x=5上.圆弧C1的圆心是坐标原点O,半径为r1=13;圆弧C2过点A(29,0).

(1)求圆弧C2所在圆的方程;

(2)曲线C上是否存在点P,满足PA=PO?若存在,指出有几个这样的点;若不存在,请说明理由;

(3)已知直线l:x-my-14=0与曲线C交于E、F两点,当EF=33时,求坐标原点O到直线l的距离.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:解答题

已知圆C:x2+(y-3)2=4,一动直线l过A(-1,0)与圆C相交于P、Q两点,

M是PQ中点,l与直线m:x+3y+6=0相交于N.

(1)求证:当l与m垂直时,l必过圆心C;

(2)当PQ=2时,求直线l的方程;

(3)探索·是否与直线l的倾斜角有关?若无关,请求出其值;若有关,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第5课时练习卷(解析版) 题型:填空题

已知圆O:x2+y2=4,则过点P(2,4)与圆O相切的切线方程为________________.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第4课时练习卷(解析版) 题型:解答题

在平面直角坐标系xOy中,二次函数f(x)=x2+2x+b(x∈R)与两坐标轴有三个交点.记过三个交点的圆为圆C.

(1)求实数b的取值范围;

(2)求圆C的方程;

(3)圆C是否经过定点(与b的取值无关)?证明你的结论.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第九章第11课时练习卷(解析版) 题型:填空题

已知抛物线y2=2px(p≠0)及定点A(a,b),B(-a,0),ab≠0,b2≠2pa,M是抛物线上的点.设直线AM、BM与抛物线的另一个交点分别为M1、M2,当M变动时,直线M1M2恒过一个定点,此定点坐标为________.

 

查看答案和解析>>

同步练习册答案