精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=$\sqrt{x+1}+\frac{1}{x+2}$,则f(3)的值为(  )
A.2B.$\frac{1}{5}$C.$\frac{11}{5}$D.$\frac{5}{11}$

分析 直接利用函数的解析式求解函数值即可.

解答 解:函数f(x)=$\sqrt{x+1}+\frac{1}{x+2}$,
则f(3)=$\sqrt{4}+\frac{1}{3+2}$=$\frac{11}{5}$.
故选:C.

点评 本题考查函数的解析式的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax在[$\frac{2}{3}$,+∞)上存在单调递增区间,则a的取值范围是$(-\frac{1}{9},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{2}-\frac{2}{{e}^{x}+1},x≥0}\\{\frac{2}{{e}^{x}+1}-\frac{3}{2},x<0}\end{array}\right.$.
(1)求函数f(x)的零点;
(2)若实数t满足f(log2t)+f(log2$\frac{1}{t}$)<2f(2),求f(t)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=(x-1)3+m.
(1)若f(1)=1,求函数f(x)的单调区间;
(2)若关于x的不等式f(x)≥x3-1在区间[1,2]上有解,求m的取值范围;
(3)设f′(x)是函数f(x)的导函数,f″(x)是函数f′(x)的导函数,若函数f″(x)的零点为x0,则点(x0,f(x0))恰好就是该函数f(x)的对称中心,若m=1,试求f($\frac{1}{1008}$)+f($\frac{2}{1008}$)+…+f($\frac{2014}{1008}$)+f($\frac{2015}{1008}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设a,b,c,d是正数,且a+b+c+d=4,证明:$\frac{{a}^{2}}{b}$+$\frac{{b}^{2}}{c}$+$\frac{{c}^{2}}{d}$+$\frac{{d}^{2}}{a}$≥4+(a-b)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$f(x)=\left\{\begin{array}{l}{2x-3(x>0)}\\{{e^x}(x<0)}\end{array}$,则f[f(1)]=$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=cos2x-asinx+2.
(1)若a=-1,求函数f(x)的值域;
(2)若对于任意的实数x,都有f(x)≤5,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=lg($\sqrt{{x}^{2}+1}$-x),若不等式f(mx)+f(x2-2)>0对任意的x∈[-1,1]恒成立,则m的取值范围为-1<m<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题p:?x1,x2∈R,x1≠x2,有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0,命题q:f(x)为R上的增函数;则命题p是命题q的(  )条件.
A.充分不必要B.必要不充分C.充要D.不充分且不必要

查看答案和解析>>

同步练习册答案