精英家教网 > 高中数学 > 题目详情
18.在平面直角坐标系xOy中,若焦点在x轴的椭圆$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{4}$=1的离心率为$\frac{1}{2}$,则m=$\frac{16}{3}$.

分析 依题意可得m>4,由椭圆的离心率为$\frac{1}{2}$,可求得m的值.

解答 解:椭圆$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{4}$=1焦点在x轴上,
∴m>4,
又椭圆的离心率为$\frac{1}{2}$,
∴e=$\sqrt{\frac{m-4}{m}}$=$\frac{1}{2}$,
解得m=$\frac{16}{3}$.
故答案为:$\frac{16}{3}$.

点评 本题考查椭圆的简单性质,考查对离心率概念的理解与应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若关于x的函数y=sinωx在[-$\frac{π}{3}$,$\frac{π}{2}}$]上的最大值为1,则ω的取值范围是{ω|ω≥1或ω≤-$\frac{3}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知集合A={x|x2-4x+3>0,x∈R}与集合B={x|${\frac{1}{x}$<1,x∈R},那么集合A∩B={x|x>3或x<0,x∈R}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=x3-$\frac{3}{2}$ax2,且关于x的方程f(x)+a=0有三个不等的实数根,则实数a的取值范围是(  )
A.(-∞,-$\sqrt{2}$)∪(0,$\sqrt{2}$)B.(-$\sqrt{2}$,0)∪($\sqrt{2}$,+∞)C.(-$\sqrt{2}$,$\sqrt{2}$)D.(-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题p:?x>0,都有cosx≥-1,则(  )
A.¬p:?x>0,都有cosx<-1B.¬p:?x>0,使得cosx<-1
C.¬p:?x>0,使得cosx>-1D.¬p:?x>0,都有cosx≥-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若关于x的不等式x2-4x≥m对x∈[3,4)恒成立,则(  )
A.m≥-3B.-3≤m<0C.m≤-3D.m≥-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,椭圆的中心在坐标原点,焦点在x轴上,A1,A2,B1,B2为椭圆顶点,F2为右焦点,延长B1F2与A2B2交于点P,若∠B1PB2为钝角,则该椭圆离心率的取值范围是(  )
A.($\frac{\sqrt{5}-2}{2}$,1)B.(0,$\frac{\sqrt{5}-2}{2}$)C.(0,$\frac{\sqrt{5}-1}{2}$)D.($\frac{\sqrt{5}-1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线y=k(x-1)与抛物线C:y2=2px相交于P,Q两点,设P,Q在该抛物线的准线上的射影分别是P′,Q′,则无论k为何值,总有|PP′|+|QQ′|=|PQ|.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设点A为y轴上异于原点的任意一点,过点A作抛物线C的切线l,直线x=3分别与直线l及x轴交于点M,N,以MN为直径作圆E,过点A作圆E的切线,切点为B,试探究:当点A在y轴上运动(点A与原点不重合)时,线段AB的长度是否发生变化?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn
(Ⅰ)求an及Sn
(Ⅱ)令bn=$\frac{{S}_{n}}{n}$(n∈N+),求证:数列{bn}为等差数列.

查看答案和解析>>

同步练习册答案