精英家教网 > 高中数学 > 题目详情
9.已知集合A={x|x2-4x+3>0,x∈R}与集合B={x|${\frac{1}{x}$<1,x∈R},那么集合A∩B={x|x>3或x<0,x∈R}.

分析 求出A,B中不等式的解集,找出A与B的交集即可.

解答 解:由x2-4x+3>0得(x-3)(x-1)>0,
解得:x<1或x>3,即A={x|x<1或x>3},
∵$\frac{1}{x}$<1,即为$\frac{1-x}{x}$<0,即为x(x-1)>0,
解得:x<0或x>1,即B={x|x<0或x>1},
∴A∩B={x|x>3或x<0,x∈R}
故答案为:{x|x>3或x<0,x∈R}

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.“?x0∈R,ax02+ax0+1<0”为假命题,则a∈a∈[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线y2=2px(p>0)的焦点F(1,0),直线l:y=x+m与抛物线交于不同的两点A,B,若0≤m<1,则△FAB的面积的最大值是$\frac{8\sqrt{6}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若抛物线y2=16x上一点P到焦点的距离为8,则P点的坐标为(  )
A.(1,4)B.(4,8)C.(4,-8)D.(4,±8)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{ex}{{e}^{x}}$,g(x)=ax-2lnx-a (a∈R,e为自然对数的底数).
(1)求f(x)的极值;
(2)在区间(0,e]上,对于任意的x0,总存在两个不同的x1,x2,使得g(x1)=g(x2)=f(x0),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.欧巴老师布置给时镇同学这样一份数学作业:在同一个直角坐标系中画出四个对数函数的图象,使它们的底数分别为$\sqrt{3}$、$\frac{1}{10}$、e和$\frac{3}{5}$.时镇同学为了和暮烟同学出去玩,问大英同学借了作业本很快就抄好了,详见如图.第二天,欧巴老师当堂质问时镇同学:“你画的四条曲线中,哪条是底数为e的对数函数图象?”时镇同学无言以对,憋得满脸通红.眼看时镇同学就要被欧巴老师训斥一番,聪明睿智的你能不能帮他一把,回答这个问题呢?
曲线C1才是底数为e的对数函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(2,0,2),(2,2,0),(0,2,2),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系xOy中,若焦点在x轴的椭圆$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{4}$=1的离心率为$\frac{1}{2}$,则m=$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,AB=AD=AP=2CD=2.
(Ⅰ)若M是棱PB上一点,且BM=2PM,求证:PD∥平面MAC;          
(Ⅱ) 若平面PAB⊥平面ABCD,平面PAD⊥平面ABCD,求证:PA⊥平面ABCD;
(Ⅲ)在(Ⅰ)的条件下,求三棱锥M-ABC的体积.

查看答案和解析>>

同步练习册答案