精英家教网 > 高中数学 > 题目详情
已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.
(1)若恰在第5次测试,才测试到第一件次品,第十次才找到最后一件次品,则这样的不同测试方法数是多少?
(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?
【答案】分析:(1)本题是一个分别计数问题,先排前4次测试,只能取正品,有A64种不同测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有C42•A22种测法,
再排除余下4件的测试位置有A44种,根据分步计数原理得到结果.
(2)恰在第5次测试后,就找出了所有4件次品,表示第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,利用组合数写出结果.
解答:解:(1)由题意知本题是一个分别计数问题,
先排前4次测试,只能取正品,有A64种不同测试方法,
再从4件次品中选2件排在第5和第10的位置上测试,
有C42•A22=A42种测法,再排余下4件的测试位置有A44种测法.
∴共有不同排法A64•A42•A44=103680种.
(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现.
∴共有不同测试方法A41•(C61•C33)A44=576种.
点评:本题考查分步计数问题,考查排列组合的实际应用,考查用排列组合数表示方法数,本题是一个易错题,易错点在第二问的对于第5次测试恰为最后一件次品的理解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.
(1)若恰在第5次测试,才测试到第一件次品,第十次才找到最后一件次品,则这样的不同测试方法数是多少?
(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知10件不同的产品中共有3件次品,现对它们进行一一测试,直到找出所有3件次品为止.
(1)求恰好在第5次测试时3件次品全部被测出的概率;
(2)记恰好在第k次测试时3件次品全部被测出的概率为f(k),求f(k)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:2013届浙江省高二第一次月考理科数学试卷(解析版) 题型:解答题

已知10件不同产品中有4件是次品,现对它们进行一一测试,直到选出所有4件次品为止。

(1)若恰在第5次测试,才测试到第一件次品,第十次才找到最后一件次品的不同测试方法数是多少?

(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?

 

查看答案和解析>>

科目:高中数学 来源:新课标高三数学组合、排列与组合的综合问题专项训练(河北) 题型:解答题

已知10件不同产品中有4件是次品,现对它们进行一一测试,直到选出所有4件次品为止。

(1)若恰在第5次测试,才测试到第一件次品,第十次才找到最后一件次品的不同测试方法数是多少?

(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?

 

查看答案和解析>>

同步练习册答案