精英家教网 > 高中数学 > 题目详情
17.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.若B?A,求实数m的取值范围.

分析 直接利用集合的子集关系,列出不等式求出m的范围即可.

解答 解:集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.若B${\;}_{≠}^{?}$A,
B=∅,则m+1>2m-1,可得m<2,
当B≠∅时,
可得:$\left\{\begin{array}{l}m+1≤2m-1\\ m+1≥-2\\ 5≥2m-1\end{array}\right.$,解得:2≤m≤3.
实数m的取值范围:(-∞,3].

点评 本题考查集合子集的运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,a,b,c分别是三个内角A,B,C所对的边,关于实数x的不等式x2+2xsinC+$\frac{1}{2}$cosC+$\frac{1}{2}$≥0的解集为R.
(Ⅰ)求角C的最大值;
(Ⅱ)若c=8,△ABC的面积S=3$\sqrt{3}$,求角C取最大值时a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数f(x)=$\frac{{x}^{2}-2x}{{x}^{2}-2x+2}$,x∈[-1,2]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=$\frac{a{x}^{2}+1}{bx+c}$(a,b,c∈Z)满足f(-x)+f(x)=0,且f(1)=2,f(2)<3.
(1)求a,b,c的值;
(2)当x≤-1时,判断f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)的图象如图所示,其中点O,A,B,C的坐标分别为(0,0),(-5,$\frac{3}{2}$),(0,4),(2,0),则f(-5)=$\frac{3}{2}$,f[f(2)]=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求下列各式的值:
(1)x+x-1
(2)$\frac{{x}^{\frac{3}{2}}+{x}^{-\frac{3}{2}}+2}{{x}^{2}+{x}^{-2}+3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}的前n项和为Sn=3n-2,则an=$\left\{\begin{array}{l}1,n=1\\ 2•{3}^{n-1},n≥2\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=$\frac{-{x}^{2}+98x+35}{2(x+1)}$(x≥0)的最大值是42.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.用集合表示下列文氏图中的阴影部分:

查看答案和解析>>

同步练习册答案