精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别为a,b,c,且tanA+tanB=
2sinC
cosA

(Ⅰ)求角B的大小;
(Ⅱ)已知
a
c
+
c
a
=3,求
1
tanA
+
1
tanC
的值.
考点:正弦定理,余弦定理
专题:解三角形
分析:(Ⅰ)切化弦,可整理为tanA+tanB=
sinC
cosAcosB
,结合已知tanA+tanB=
2sinC
cosA
,可求得cosB=
1
2
,在△ABC中,可求得B的值;
(Ⅱ)由
a
c
+
c
a
=3,易求
b2
ac
=2,利用正弦定理可得
b2
ac
=
sin2B
sinAsinC
=
3
4sinAsinC
=2,从而可求得
1
tanA
+
1
tanC
的值.
解答: 解:(Ⅰ)∵tanA+tanB=
sinA
cosA
+
sinB
cosB
=
sinAcosB+cosAsinB
cosAcosB
=
sin(A+B)
cosAcosB
=
sinC
cosAcosB
,…(3分)
∵tanA+tanB=
2sinC
cosA

sinC
cosAcosB
=
2sinC
cosA

∴cosB=
1
2

∵0<B<π,
∴B=
π
3
.…(6分)
(Ⅱ)∵
a
c
+
c
a
=
a2+c2
ac
=
b2+2accosB
ac
=
b2+2ac×
1
2
ac
=3,
b2
ac
=2,…(9分)
b2
ac
=
sin2B
sinAsinC
=
sin2
π
3
sinAsinC
=
3
4sinAsinC

∴sinAsinC=
3
8
.…(12分)
1
tanA
+
1
tanC
=
cosA
sinA
+
cosC
sinC
=
sin(A+C)
sinAsinC
=
sinB
sinAsinC
=
3
2sinAsinC
=
4
3
3
.…(14分)
点评:本题考查正弦定理与余弦定理的综合应用,考查等价转化思想与运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:(x-2)2+y2=1,点P在直线l:x+y+1=0上,若过点P存在直线m与圆C交于A、B两点,且点A为PB的中点,则点P横坐标x0的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某园艺师培育了两种珍稀树苗A与B,株数分别为12与18,现将这30株树苗的高度编写成如茎叶图(单位:cm):

在这30株树苗中,树高在175cm以上(包括175cm)定义为“生长良好”,树高在175cm以下(不包括175cm)定义为“非生长良好”,且只有“B生长良好”的才可以出售.
(1)对于这30株树苗,如果用分层抽样的方法从“生长良好”和“非生长良好”中共抽取5株,再从这5株中任选2株,那么至少有一株“生长良好”的概率是多少?
(2)若从所有“生长良好”中选3株,用X表示所选中的树苗中能出售的株树,试写出X的分布列,并求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-x+1,x∈(0,+∞),g(x)=x3-ax.
(1)求f(x)的最大值;
(2)若对?x1∈(0,+∞),总存在x2∈[1,2]使得f(x1)≤g(x2)成立,求a的取值范围;
(3)证明不等式:(
1
n
n+(
2
n
n+…+(
n
n
n
e
e-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-x+alnx
(其中a为常数).
(Ⅰ)当a=-2时,求函数 f(x)的最值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的一个顶点与抛物线C:x2=4
3
y的焦点重合,F1F2分别是椭圆的左、右焦点,且离心率e=
1
2
,直线l:y=kx+m(km<0)与椭圆C交于M、N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若AB是椭圆C经过原点O的弦,AB∥l,且
|AB|2
|MN|
=4.是否存在直线l,使得
OM
ON
=-2?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设u=(x,y)=|ex-y|-y|x-lny|,x,y∈R.
(1)若a>0,令f(x)=(x,a),判断f(x)的单调性;
(2)若0<a<b,令F(x)=u(x,a)-u(x,b),试求函数F(x)的最小值;
(3)记(2)中的最小值为T(a,b),证明:T(a,b)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当0≤x≤1时,f(x)=x2,当x>1时,f(x+1)=f(x)+f(1),且若直线y=kx与函数y=f(x)的图象恰有5个不同的公共点,则实数k的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,则输出的结果是(  )
A、5B、7C、9D、11

查看答案和解析>>

同步练习册答案