精英家教网 > 高中数学 > 题目详情

已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)求证:不论m取什么实数,直线l与圆C恒交于两点;
(2)求直线被圆C截得的弦长最小时直线l的方程.

(1)见解析(2)2x-y-5=0.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆心为的圆经过点(0,),(1,),且圆心在直线 上,求圆心为的圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆:轴相切,点为圆心.
(1)求的值;
(2)求圆轴上截得的弦长;
(3)若点是直线上的动点,过点作直线与圆相切,为切点.求四边形面积的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,以为圆心的圆与直线相切,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆满足:①截轴所得弦长为;②被轴分成两段圆弧,其弧长的比为;③圆心到直线的距离为的圆的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.
求:(1)求圆的方程;
(2)设直线与圆相交于两点,求实数的取值范围;
(3)在(2)的条件下,是否存在实数,使得过点的直线垂直平分弦
若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l:x-2y=0的距离为,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若方程ax2+ay2-4(a-1)x+4y=0表示圆,求实数a的取值范围,并求出半径最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知动圆与直线相切且与圆外切。
(1)求圆心的轨迹方程;
(2)过定点作直线交轨迹两点,点关于坐标原点的对称点,求证:

查看答案和解析>>

同步练习册答案