7£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÉèÖ±ÏßC1£º$\frac{x}{a}$+$\frac{y}{b}$=1£¨a£¾b£¾0£©Óë×ø±êÖáËùΧ³ÉµÄ·â±ÕͼÐεÄÃæ»ýΪ1£¬Ö±ÏßC1Éϵĵ㵽ԭµãOµÄ×î¶Ì¾àÀëΪ$\frac{2\sqrt{5}}{5}$£¬ÒÔÇúÏßC1Óë×ø±êÖáµÄ½»µãΪ¶¥µãµÄÍÖÔ²¼ÇΪ¦££®
£¨1£©ÇóÍÖÔ²¦£µÄ±ê×¼·½³Ì£»
£¨2£©¼ºÖªÖ±Ïßl£ºy=kx+mÓëÍÖÔ²¦£½»ÓÚ²»Í¬Á½µãA¡¢B£¬µãGÊÇÏß¶ÎABÖе㣬ÉäÏßOG½»¹ì¼£¦£ÓÚµãQ£¬ÇÒ$\overrightarrow{OQ}$=¦Ë$\overrightarrow{OG}$£¬¦Ë¡ÊR£¬Èô¡÷AOBµÄÃæ»ýΪ1£¬Çó¦ËµÄÖµ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃab=2£¬ÔÙÓɵ㵽ֱÏߵľàÀ빫ʽ£¬¿ÉµÃa2+b2=5£¬½â·½³Ì¿ÉµÃa£¬b£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉÖ±Ïß´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬µÃ£¨1+4k2£©x2+8kmx+4m2-4=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢Öеã×ø±ê¹«Ê½£¬ÓÉÒÑÖªÌõ¼þµÃm¡Ù0£¬¼ÆËã|x1-x2|£¬ÓÉ´ËÄÜÇó³ö¡÷AOBµÄÃæ»ý£¬½â·½³Ì¿ÉµÃËùÇó£®

½â´ð ½â£º£¨1£©Ö±ÏßC1£º$\frac{x}{a}$+$\frac{y}{b}$=1Óë×ø±êÖáµÄ½»µãΪ£¨a£¬0£©£¬£¨0£¬b£©£¬
¼´ÓÐ$\frac{1}{2}$ab=1£¬¼´ab=2£¬
ÓÖÔ­µãµ½Ö±ÏߵľàÀëΪ$\frac{2}{\sqrt{5}}$£¬
¼´Îª$\frac{1}{\sqrt{\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}}}$=$\frac{2}{\sqrt{5}}$£¬
½âµÃa=2£¬b=1£¬
ÔòÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÓÉÖ±Ïßy=kx+m´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥y£¬µÃ£¨1+4k2£©x2+8kmx+4m2-4=0£¬
¡àx1+x2=$\frac{-8km}{1+4{k}^{2}}$£¬x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$¢Ù
¡ày1+y2=k£¨x1+x2£©+2m=$\frac{2m}{1+4{k}^{2}}$£¬
ÓÖÓÉÖеã×ø±ê¹«Ê½£¬µÃG£¨$\frac{-4km}{1+4{k}^{2}}$£¬$\frac{m}{1+4{k}^{2}}$£©£¬
½«Q£¨$\frac{-4¦Ëkm}{1+4{k}^{2}}$£¬$\frac{¦Ëm}{1+4{k}^{2}}$£©´úÈëÍÖÔ²·½³Ì£¬»¯¼ò£¬µÃ¦Ë2m2=1+4k2£¬¢Ú£®
¢Ú½â£ºÓÉ¢Ù¢ÚµÃm¡Ù0£¬¦Ë£¾1ÇÒ|x1-x2|=$\frac{4\sqrt{1+4{k}^{2}-{m}^{2}}}{1+4{k}^{2}}$£¬¢Û
½áºÏ¢Ú¢Û£¬µÃS¡÷AOB=$\frac{1}{2}$|m|•|x1-x2|=$\frac{2\sqrt{{¦Ë}^{2}-1}}{{¦Ë}^{2}}$£¬¦Ë¡Ê£¨1£¬+¡Þ£©£¬
ÓÉS¡÷AOB=1£¬½âµÃ¦Ë=$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬¿¼²éÖ±ÏߺÍÍÖÔ²µÄλÖùØÏµ£¬Ö±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬Í¬Ê±¿¼²éÏòÁ¿µÄ¹²ÏßµÄ×ø±ê±íʾºÍÈý½ÇÐεÄÃæ»ý¹«Ê½µÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ËÄÃæÌåµÄÒ»ÌõÀⳤΪx£¬ÆäÓàÀⳤ¾ùΪ3£¬µ±¸ÃËÄÃæÌåÌå»ý×î´óʱµÄ±íÃæ»ýΪ$\frac{9\sqrt{3}}{2}+\frac{9}{4}\sqrt{15}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖª½¹µãÔÚxÖáÉϵÄÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1µÄ³¤ÖáΪ4£¬½¹¾àΪ2£¬¹ýÓÒ½¹µãµÄÖ±ÏßlÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£¬|AB|=$\frac{24}{7}$£¬ÔòÖ±ÏßlµÄÇãб½ÇΪ$\frac{¦Ð}{4}$»ò$\frac{3¦Ð}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªan=n+2£¬´ÓÎÞÇîÊýÁÐ{an}ÖгéÈ¡²¿·ÖÏîa${\;}_{{k}_{1}}$£¬a${\;}_{{k}_{2}}$£¬¡­a${\;}_{{k}_{3}}$£¬¡­×é³ÉÒ»¸öµÈ±ÈÊýÁÐ{bn}£¬ÆäÖÐ1=k1£¼k2£¼k3£¼¡­£¼kn£¼kn+1£¼¡­£¬£¨n¡ÊN*£©£¬kn¡ÊN*£¬¼ÇÕâ¸öµÈ±ÈÊýÁеĹ«±ÈΪq£®
£¨1£©ÇóÖ¤£ºq¡ÊN*£¬q¡Ý2£»
£¨2£©ÇóÖ¤£º$\frac{{q}^{n}-1}{q-1}$£¨n¡ÊN*£©ÊÇÕýÕûÊý£»
£¨3£©ÉèÊýÁÐ{an}µÄǰnÏîµÄºÍΪSn£¬Èô´æÔÚn¡ÊN*£¬Ê¹Sn¡Ýqn³ÉÁ¢£¬ÇóqµÄËùÓпÉÄÜȡֵ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¶þ´Îº¯Êýf£¨x£©=x2+2x+bµÄͼÏóÓëÁ½×ø±êÖáÓÐÈý¸ö½»µã£¬¾­¹ýÕâÈý¸öµãµÄÔ²¼ÇΪC£®
£¨1£©ÇóʵÊýbµÄȡֵ·¶Î§£»
£¨2£©µ±Ô²CµÄ°ë¾¶Îª$\sqrt{2}$ʱ£¬ÇóÔ²CµÄ·½³Ì£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬¹ýµã£¨-1£¬1£©µÄ×ÏÒÓë×î¶ÌÏÒ·Ö±ðΪAB£¬CD£¬ÇóËıßÐÎACBDµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚ³¤·½ÌåABCD-A¡äB¡äC¡äD¡äÖУ¬AB=BC=2£¬¹ýA¡ä£¬C¡ä£¬BÈýµãµÄÆ½Ãæ½ØÈ¥³¤·½ÌåµÄÒ»¸ö½Çºó£¬µÃµ½ABCD-A¡äC¡äD¡ä£¬
£¨¢ñ£©ÈôDD¡ä=3£¬Ç󼸺ÎÌåABCD-A¡äC¡äD¡äµÄÌå»ý£»
£¨¢ò£©ÈôDD¡ä£¾1£¬ÇÒÖ±ÏßA¡äDÓëÆ½ÃæA¡äBC¡äËù³ÉµÄ½ÇµÄÕýÏÒֵΪ$\frac{4\sqrt{5}}{15}$£¬Çó¶þÃæ½ÇD-A¡äB-C¡äµÄÆ½Ãæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÈçͼËùʾ£¬ËıßÐÎABCDÖУ¬¡ÏBAD=¡ÏADC=90¡ã£¬AB=AD=$\frac{1}{2}$CD=2£¬µãEÔÚ±ßABÉÏ£¬µãFÔÚ±ßCDÉÏ£¬ÇÒEF¡ÎAD£¬ÑØEF½«ÃæEBCFÕÛÆð£¬Ê¹µÃCF¡ÍAE£®
£¨1£©ÈôµãMÔÚCDÉÏ£¬ÇÒFM¡ÍCD£¬ÇóÖ¤£ºFM¡ÍÆ½ÃæACD£»
£¨2£©µ±ÈýÀâ×¶F-ABEµÄÌå»ý×î´óʱ£¬ÔÚÏß¶ÎCFÉÏÊÇ·ñ´æÔÚÒ»µãG£¬Ê¹µÃDG¡ÎÆ½ÃæABC£¬Èô´æÔÚ£¬Çó´ËʱÏß¶ÎCGµÄ³¤¶È£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èçͼ£¬Õý·½ÌåABCD-A1B1C1D1ÖУ¬EÊÇÀâB1C1µÄÖе㣬¶¯µãPΪÕý·½Ìå¸÷ÃæÉϵÄÈÎÒ»µã£®
¢ÙÈô¶¯µãPÊÇADµÄÖе㣬ÔòA1E¡ÎÆ½ÃæC1CP£»
¢ÚÈô¶¯µãPÔÚµ×ÃæABCDÄÚ£¬ÇÒPA1=A1E£¬ÔòµãPÔ˶¯¹ì¼£ÎªÒ»ÌõÏ߶Σ»
¢ÛÈô¶¯µãPÊÇCC1µÄÖе㣬ÔòA1E£¬DPΪÒìÃæÖ±Ïߣ»
¢ÜÈô¶¯µãPÓëCµãÖØºÏ£¬ÔòÆ½ÃæA1EP½Ø¸ÃÕý·½ÌåËùµÃµÄ½ØÃæµÄÐÎ״ΪÁâÐΣ®
ÒÔÉÏÎªÕæÃüÌâµÄÐòºÅµÄÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÚB£®¢Ù¢ÜC£®¢Ú¢ÜD£®¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªa£¬b£¬c¾ùΪÕýʵÊý£¬ÇÒa+b+c=1£®ÇóÖ¤£º£¨1+a£©£¨1+b£©£¨1+c£©¡Ý8£¨1-a£©£¨1-b£©£¨1-c£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸