精英家教网 > 高中数学 > 题目详情
1.如果函数y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f=f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”;
(1)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”,试写出所有a的值;若不具有“P(a)性质”,请说明理由;
(2)已知y=f(x)具有“P(0)性质”,当x≤0时,f(x)=(x+t)2,t∈R,求y=f(x)在[0,1]上的最大值;
(3)设函数y=g(x)具有“P(±1)性质”,且当-$\frac{1}{2}$≤x≤$\frac{1}{2}$时,g(x)=|x|,求:当x∈R时,函数g(x)的解析式,若y=g(x)与y=mx(m∈R)交点个数为1001个,求m的值.

分析 (1)根据题意先检验sin(x+a)=sin(-x)是否成立即可检验y=sinx是否具有“P(a)性质”
(2)由y=f(x)具有“P(0)性质可得f(x)=f(-x),结合x≤0时的函数解析式可求x≥0的函数解析式,结合t的范围判断函数y=f(x)在[0,1]上的单调性即可求解函数的最值
(3)由题意可得g(1+x)=g(-x),g(-1+x)=g(-x),据此递推关系可推断函数y=g(x)的周期,根据交点周期性出现的规律即可求解满足条件的m,以及g(x)的解析式

解答 解:(1)由sin(x+a)=sin(-x)得sin(x+a)=-sinx,
根据诱导公式得a=2kπ+π(k∈Z).
∴y=sinx具有“P(a)性质”,其中a=2kπ+π(k∈Z).
(2)∵y=f(x)具有“P(0)性质”,
∴f(x)=f(-x).
设x≥0,则-x≤0,∴f(x)=f(-x)=(-x+t)2=(x-t)2
∴f(x)=$\left\{\begin{array}{l}{(x+t)^{2},x≤0}\\{(x-t)^{2},x≥0}\end{array}\right.$
当t≤0时,∵y=f(x)在[0,1]递增,
∴x=1时ymax=(1-t)2
当0<t<$\frac{1}{2}$时,y=f(x)在[0,t]上递减,在[t,1]上递增,且f(0)=t2<f(1)=(1-t)2
∴x=1时ymax=(1-t)2
当t≥$\frac{1}{2}$时,
∵y=f(x)在[0,m]上递减,在[m,1]上递增,且f(0)=m2≥f(1)=(1-m)2
∴x=0时,ymax=t2
综上所述:当t<$\frac{1}{2}$时,ymax=f(1)=(1-t)2
当t≥$\frac{1}{2}$ymax=f(0)=t2
(3)∵y=g(x)具有“P(±1)性质”,
∴g(1+x)=g(-x),g(-1+x)=g(-x),
∴g(x+2)=g(1+1+x)=g(-1-x)=g(x),从而得到y=g(x)是以2为周期的函数.
又$\frac{1}{2}$≤x≤$\frac{3}{2}$设,则-$\frac{1}{2}$≤x-1≤$\frac{1}{2}$,
g(x)=g(x-2)=g(-1+x-1)=g(-x+1)=|-x+1|=|x-1|=g(x-1).
再设n-$\frac{1}{2}$≤x≤n+$\frac{1}{2}$(n∈z),
当n=2k(k∈z),则2k-$\frac{1}{2}$≤x≤2k+$\frac{1}{2}$,则-$\frac{1}{2}$≤x-2k≤$\frac{1}{2}$,
g(x)=g(x-2k)=|x-2k|=|x-n|;
当n=2k+1(k∈z),则2k+1-$\frac{1}{2}$≤x≤2k+1+$\frac{1}{2}$,则$\frac{1}{2}$≤x-2k≤$\frac{3}{2}$
g(x)=g(x-2k)=|x-2k-1|=|x-n|;
∴g(x)=$\left\{\begin{array}{l}{-x+n,n-\frac{1}{2}≤x≤n}\\{x-n,n<x<n+\frac{1}{2}}\end{array}\right.$
∴对于n-$\frac{1}{2}$≤x≤n+$\frac{1}{2}$,(n∈z),都有g(x)=|x-n|,而n+1-$\frac{1}{2}$<x+1<n+1+$\frac{1}{2}$,
∴g(x+1)=|(x+1)-(n+1)|=|x-n|=g(x),
∴y=g(x)是周期为1的函数.
①当m>0时,要使y=mx与y=g(x)有1001个交点,只要y=mx与y=g(x)在[0,500)有1000个交点,而在[500,501]有一个交点.
∴y=mx过($\frac{1001}{2}$,$\frac{1}{2}$),从而得m=$\frac{1}{1001}$
②当m<0时,同理可得m=-$\frac{1}{1001}$
③当m=0时,不合题意.
综上所述m=±$\frac{1}{1001}$

点评 本题考查周期函数,着重考查函数在一定条件下的恒成立问题与最值求解的相互转化,综合考察构造函数、分析转化、分类讨论的数学思想与方法,难度大,思维深刻,属于难题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.等差数列{an}的公差为d,关于x的不等式$\frac{d}{2}$x2+(a1-$\frac{d}{2}$)x+c≥0的解集是[0,12],则使得数列{an}的前n项和大于零的最大的正整数n的值是(  )
A.6B.11或12C.12D.12或13

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知椭圆C:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1的左右焦点分别为F1,F2,则在椭圆C上满足∠F1PF2=$\frac{π}{2}$的点P的个数有(  )
A.0个B.1个C.2 个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象,如图所示,根据图象:
(1)写出函数f(x),x∈R的增区间并将图象补充完整;
(2)写出函数f(x),x∈R的解析式;
(3)若函数g(x)=f(x)-4ax+2,x∈[1,3],求函数g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=x2-1(-1≤x<0),则f-1(x)=-$\sqrt{x+1}$,x∈(-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点A、B是抛物线C:x2=2py(p>0)上不同的两点,点D在抛物线C的准线l上,且焦点F到准线l的距离为2.
(1)求抛物线C的方程;
(2)若点F与原点O分别在直线AB与直线AD上,探究:直线BD与y轴间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=sinx-x,若f(cos2θ+2msinθ)+f(-2-2m)>0对任意的θ∈(0,$\frac{π}{2}$)恒成立,则实数m的取值范围为[-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.A={x|3<x≤7},B={x|4<x≤10},则A∪B={x|3<x≤10}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知双曲线$\frac{x^2}{9}-\frac{y^2}{a}$=1的右焦点为$(\sqrt{13},0)$,则该双曲线的虚轴长为4.

查看答案和解析>>

同步练习册答案