精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=x2-1(-1≤x<0),则f-1(x)=-$\sqrt{x+1}$,x∈(-1,0].

分析 根据反函数的定义,用y表示出x,再交换x、y的位置,即可得出f-1(x).

解答 解:函数y=f(x)=x2-1(-1≤x<0),
∴y+1=x2
又-1≤x<0,
∴0≤y<1,
∴x=-$\sqrt{y+1}$;
交换x、y的位置,
得y=f-1(x)=-$\sqrt{x+1}$,x∈(-1,0].
故答案为:-$\sqrt{x+1}$,x∈(-1,0].

点评 本题考查了反函数的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{ln(\sqrt{3}x)}{x}$
(1)求f(x)在[1,m](m>1)上的最小值;
(2)若关于x的不等式f2(x)-nf(x)>0有且只有三个整数解,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设双曲线的焦点在x轴上,两条渐近线方程为y=±$\frac{1}{2}$x,则该双曲线的离心率为(  )
A.$\frac{\sqrt{3}}{2}$B.1C.$\frac{\sqrt{5}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知f($\sqrt{x}$+1)=x+3$\sqrt{x}$-1,且f(k)=3则实数k的值是(  )
A.-3或2B.2C.-2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=$\sqrt{{x}^{2}-5x-6}$的定义域为(-∞,-1]∪[6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如果函数y=f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f=f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”;
(1)判断函数y=sinx是否具有“P(a)性质”,若具有“P(a)性质”,试写出所有a的值;若不具有“P(a)性质”,请说明理由;
(2)已知y=f(x)具有“P(0)性质”,当x≤0时,f(x)=(x+t)2,t∈R,求y=f(x)在[0,1]上的最大值;
(3)设函数y=g(x)具有“P(±1)性质”,且当-$\frac{1}{2}$≤x≤$\frac{1}{2}$时,g(x)=|x|,求:当x∈R时,函数g(x)的解析式,若y=g(x)与y=mx(m∈R)交点个数为1001个,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设数列{an} 的前n项和为Sn,已知4Sn=2an-n2+7n(n∈N*),则a11=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)计算:${(\frac{4}{9})^{-\frac{3}{2}}}+{[{(-2)^6}]^{\frac{1}{2}}}$-lg0.4-2lg0.5-14×${log_2}\sqrt{2}$
(2)已知P(sinα,cosα)在直线y=$\frac{1}{2}$x,求$\frac{cos(π-α)+sin(π+α)}{{cos(\frac{1}{2}π-α)+sin(\frac{1}{2}π+α)}}$+2sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2(n∈N*).
(1)设bn=an+1-2an,证明数列{bn}是等比数列(要指出首项、公比);
(2)若cn=nbn,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案