精英家教网 > 高中数学 > 题目详情
11.函数y=$\sqrt{{x}^{2}-5x-6}$的定义域为(-∞,-1]∪[6,+∞).

分析 根据二次根式的性质解关于x的一元二次方程,求出函数的定义域即可.

解答 解:由题意得:
x2-5x-6≥0,即(x-6)(x+1)≥0,
解得:x≥6或x≤-1,
故函数的定义域是(-∞,-1]∪[6,+∞),
故答案为:(-∞,-1]∪[6,+∞).

点评 本题考查了求函数的定义域问题,考查解一元二次不等式,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.对于函数f(x),若存在常数s,t,使得取定义域内的每一个x的值,都有f(x)=-f(2s-x)+t,则称f(x)为“和谐函数”,给出下列函数 ①f(x)=$\frac{x}{x+1}$ ②f(x)=(x-1)2 ③f(x)=x3+x2+1 ④f(x)=ln($\sqrt{1+9{x}^{2}}$-3x)•cosx,其中所有“和谐函数”的序号是(  )
A.①③B.②③C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{5^x},x≤0\end{array}$,则$f(f(\frac{1}{8}))$=$\frac{1}{125}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线y2=-x与直线y=k(x+1)相交于A(x1,y1),B(x2,y2)两点,O为坐标原点.
(1)求y1y2的值;
(2)求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算
(1)$\root{3}{(-8)^{3}}$+$\sqrt{(-10)^{2}}$+($\frac{1}{2}$)-3
(2)lg5•(lg8+lg1000)+(lg2${\;}^{\sqrt{3}}$)2+lg$\frac{1}{6}$+lg0.006.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=x2-1(-1≤x<0),则f-1(x)=-$\sqrt{x+1}$,x∈(-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρcosθ-ρsinθ=1上的点与曲线M:$\left\{\begin{array}{l}{x=-2+cosφ}\\{y=1+sinφ}\end{array}\right.$(φ为参数)上的点的最短距离为(  )
A.2$\sqrt{2}$B.2$\sqrt{2}$-1C.$\sqrt{2}$-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知α∈($\frac{π}{2}$,π),sin(α+$\frac{π}{12}$)=$\frac{1}{3}$,则$sin(α+\frac{7π}{12})$=(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{{2\sqrt{2}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=x2+ax+b,a,b∈R,若f(x)>0的解集为{x|x<0或x>2}.
(Ⅰ)求a,b的值;
(Ⅱ)解不等式f(x)<m2-1.

查看答案和解析>>

同步练习册答案