| A. | $-\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | $-\frac{{2\sqrt{2}}}{3}$ | D. | $\frac{{2\sqrt{2}}}{3}$ |
分析 由已知利用同角三角函数基本关系式可求cos(α+$\frac{π}{12}$)的值,进而利用诱导公式可求$sin(α+\frac{7π}{12})$的值.
解答 解:∵α∈($\frac{π}{2}$,π),α+$\frac{π}{12}$∈($\frac{7π}{12}$,$\frac{13π}{12}$),sin(α+$\frac{π}{12}$)=$\frac{1}{3}$,
∴cos(α+$\frac{π}{12}$)=-$\sqrt{1-(\frac{1}{3})^{2}}$=-$\frac{2\sqrt{2}}{3}$,
∴$sin(α+\frac{7π}{12})$=sin(α+$\frac{π}{12}$+$\frac{π}{2}$)=cos(α+$\frac{π}{12}$)=-$\frac{2\sqrt{2}}{3}$.
故选:C.
点评 本题主要考查了同角三角函数基本关系式,诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | (2,$\sqrt{2}$+1) | B. | ($\sqrt{2}$,$\sqrt{2}$+1) | C. | ($\sqrt{2}$,2) | D. | ($\sqrt{2}$,2)∪(2,$\sqrt{2}$+1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,3) | B. | (1,4) | C. | (2,3) | D. | (2,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com