分析 由4Sn=2an-n2+7n(n∈N*)⇒4Sn-1=2an-1-(n-1)2+7(n-1),n≥2,两式相减可得an+an-1=4-n(n≥2),进一步整理可得数列{an} 的奇数项是以3为首项,-1为公差的等差数列,从而可得答案.
解答 解:∵4Sn=2an-n2+7n(n∈N*),①
∴4Sn-1=2an-1-(n-1)2+7(n-1)(n≥2,n∈N*),②
①-②得:4an=2an-2an-1-2n+8,
∴an+an-1=4-n(n≥2),③
an+1+an=4-(n+1),④
④-③得:an+1-an-1=-1.
又4a1=2a1-12+7,∴a1=3.
∴数列{an} 的奇数项是以3为首项,-1为公差的等差数列,
∴a11=3+(6-1)×(-1)=-2.
故答案为:-2.
点评 本题考查数列递推式的应用,通过递推关系式的综合运用,求得数列{an} 的奇数项是以3为首项,-1为公差的等差数列是顺利解决问题的关键,考查推理与运算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{2}$-1 | C. | $\sqrt{2}$-1 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{3}$ | B. | $\frac{1}{3}$ | C. | $-\frac{{2\sqrt{2}}}{3}$ | D. | $\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com