精英家教网 > 高中数学 > 题目详情
18.式子[(-2)3]${\;}^{\frac{1}{3}}$-(-1)0=-3.

分析 根据指数幂的运算性质计算即可.

解答 解:原式=(-2)-1=-3,
故答为:-3.

点评 本题考查了指数幂的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设数列{an} 的前n项和为Sn,已知4Sn=2an-n2+7n(n∈N*),则a11=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等差数列{an}的前n项和为Sn,公差为d,若$\frac{{{S_{2017}}}}{2017}-\frac{{{S_{17}}}}{17}=100$,则d的值为$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2(n∈N*).
(1)设bn=an+1-2an,证明数列{bn}是等比数列(要指出首项、公比);
(2)若cn=nbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.高二年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
分组频数频率
[85,95)0.025
[95,105)0.050
[105,115)0.200
[115,125)120.300
[125,135)0.275
[135,145)4
[145,155]0.050
合计
(1)根据图表,①②③处的数值分别为1、0.1、1;
(2)在所给的坐标系中画出[85,155]的频率分布直方图;
(3)根据题中信息估计总体落在[125,155]中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知四面体P-ABC各面都是直角三角形,且最长棱长PC=2$\sqrt{3}$,则此四面体外接球的表面积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.圆x2+y2=r2(r为正常数)上任一点P到M$(\frac{r}{3}$,0)及N(a,0)的距离之比为常数k,则a=3r,k=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,则该几何体最长棱的长度为(  )
A.4B.$3\sqrt{2}$C.2$\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知A1,A2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$长轴的两个端点,B是它短轴的一个端点,如果$\overrightarrow{B{A_1}}$与$\overrightarrow{B{A_2}}$的夹角不小于$\frac{2π}{3}$,则该椭圆的离心率的取值范围是$[\frac{{\sqrt{6}}}{3},1)$.

查看答案和解析>>

同步练习册答案