精英家教网 > 高中数学 > 题目详情
11.已知A1,A2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$长轴的两个端点,B是它短轴的一个端点,如果$\overrightarrow{B{A_1}}$与$\overrightarrow{B{A_2}}$的夹角不小于$\frac{2π}{3}$,则该椭圆的离心率的取值范围是$[\frac{{\sqrt{6}}}{3},1)$.

分析 利用向量夹角公式、三角函数的单调性即可得出.

解答 解:取A1(-a,0),A2(a,0),B(0,b).
$\overrightarrow{B{A_1}}$=(-a,-b),$\overrightarrow{B{A_2}}$=(a,-b).
∵$\overrightarrow{B{A_1}}$与$\overrightarrow{B{A_2}}$的夹角不小于$\frac{2π}{3}$,
∴$cos<\overrightarrow{B{A}_{1}},\overrightarrow{B{A}_{2}}>$=$\frac{\overrightarrow{B{A}_{1}}•\overrightarrow{B{A}_{2}}}{|\overrightarrow{B{A}_{1}}||\overrightarrow{B{A}_{2}}|}$=$\frac{-{a}^{2}+{b}^{2}}{\sqrt{{a}^{2}+{b}^{2}}\sqrt{{a}^{2}+{b}^{2}}}$≤$cos\frac{2π}{3}$=-$\frac{1}{2}$,
化为:a2≥3b2
∴e=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$≥$\frac{\sqrt{6}}{3}$,又0<e<1.
∴e∈$[\frac{{\sqrt{6}}}{3},1)$.
故答案为:$[\frac{{\sqrt{6}}}{3},1)$.

点评 本题考查了椭圆的标准方程及其性质、向量夹角公式、数量积运算性质、三角函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.式子[(-2)3]${\;}^{\frac{1}{3}}$-(-1)0=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=2x-1+x-1的零点为x0,则x0∈(  )
A.(-1,0)B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=$\sqrt{x-1}$+$\sqrt{2-x}$的定义域为[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0.b>0)和圆O:x2+y2=b2,过双曲线C上一点P引圆O的两条切线,切点分别为A,B,若△PAB可为正三角形,则双曲线C的离心率e的取值范围是(  )
A.(1,$\sqrt{2}$]B.(1,$\sqrt{3}$]C.[$\frac{\sqrt{5}}{2}$,+∞)D.[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一个袋子里装有7个球,其中有红球4个,编号分别为1,2,3,4;白球3个,编号分别为1,2,3.从袋子中任取4个球(假设取到任何一个球的可能性相同).
(1)求取出的4个球中,含有编号为3的球的概率;
(2)在取出的4个球中,红球编号的最大值设为X,求随机变量X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,且a1=1,Sn=n2an(n∈N*).
(1)写出S1,S2,S3,S4,并猜想Sn的表达式;
(2)用数学归纳法证明你的猜想,并求出an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=sin(ωx+$\frac{π}{6}$),(ω>0)最小正周期为π,则f($\frac{π}{3}$)的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}、{bn}满足an,an+1是函数f(x)=x2-bnx+2n的两个零点,且a1=1,则b10=(  )
A.24B.32C.48D.64

查看答案和解析>>

同步练习册答案