精英家教网 > 高中数学 > 题目详情
3.已知数列{an}的前n项和为Sn,且a1=1,Sn=n2an(n∈N*).
(1)写出S1,S2,S3,S4,并猜想Sn的表达式;
(2)用数学归纳法证明你的猜想,并求出an的表达式.

分析 (1)先根据数列的前n项的和求得S1,S2,S3,S4,可知分母和分子分别是等差数列进而可猜想出Sn
(2)用数学归纳法证明数列问题时分为两个步骤,第一步,先证明当n=1时,结论显然成立,第二步,先假设当n=k+1时,有Sk=$\frac{2k}{k+1}$,利用此假设证明当n=k+1时,结论也成立即可.

解答 解:(1):∵a1=1,Sn=n2an,∴S1=a1=1,
当n=2时,S2=a1+a2=4a2,解得a2=$\frac{1}{3}$,S2=1+$\frac{1}{3}$=$\frac{4}{3}$,
当n=3时,S3=a1+a2+a3=9a3,解得a3=$\frac{1}{6}$,S3=1+$\frac{1}{3}$+$\frac{1}{6}$=$\frac{6}{4}$=$\frac{3}{2}$,
当n=4时,S4=a1+a2+a3+a4=16a4,解得a4=$\frac{1}{10}$,S4=$\frac{8}{5}$,
∴Sn=$\frac{2n}{n+1}$
(2)下面用数学归纳法证
①当n=1时,结论显然成立.
②假设当n=k时结论成立,即Sk=$\frac{2k}{k+1}$,
则当n=k+1时,则Sk+1=(k+1)2ak+1=(k+1)2(Sk+1-Sk),
∴(k2+2k)Sk+1=(k+1)2Sk=(k+1)2$\frac{2k}{k+1}$,
∴Sk+1=$\frac{2(k+1)}{k+2}$
故当n=k+1时结论也成立.
由①、②可知,对于任意的n∈N*,都有Sn=$\frac{2n}{n+1}$,
∵Sn=n2an
∴an=$\frac{{S}_{n}}{{n}^{2}}$=$\frac{\frac{2n}{n+1}}{{n}^{2}}$=$\frac{2}{n(n+1)}$

点评 本题主要考查数学归纳法,数学归纳法的基本形式设P(n)是关于自然数n的命题,若1°P(n0)成立2°假设P(k)成立(k≥n0),可以推出P(k+1)成立,则P(n)对一切大于等于n0的自然数n都成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.圆x2+y2=r2(r为正常数)上任一点P到M$(\frac{r}{3}$,0)及N(a,0)的距离之比为常数k,则a=3r,k=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知lga,lgb是方程2x2-4x+1=0的两个根,则${(lg\frac{a}{b})^2}$的值是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知A1,A2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$长轴的两个端点,B是它短轴的一个端点,如果$\overrightarrow{B{A_1}}$与$\overrightarrow{B{A_2}}$的夹角不小于$\frac{2π}{3}$,则该椭圆的离心率的取值范围是$[\frac{{\sqrt{6}}}{3},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.甲、乙两地相距400千米,一汽车从甲地匀速行驶到乙地,速度不得超过100千米/时.已知该汽车每小时的运输成本t(元)关于速度x(千米/时)的函数关系式是t=$\frac{1}{19200}$x4-$\frac{1}{160}$x3+15x.
(1)当汽车以60千米/时的速度匀速行驶时,全程运输成本为多少元?
(2)为使全程运输成本最少,汽车应以多少速度行驶?并求出此时运输成本的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.sin(70°)[1-$\sqrt{3}$tan(50°)]=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=$\frac{1}{x}$-2x.
(1)判断函数f(x)的奇偶性;
(2)判断函数f(x)在(0,+∞)上的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知偶函数f(x)(x≠0)在(-∞,0)上是单调函数,则满足f(x2-2x-1)=f(x+1)的所有x的和为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不等式0<|2x-1|<5 的解集为(  )
A.{x|-2<x<3}B.{x|-2<x<2}C.{x|x<-2或x>3}D.{x|-2<x<3且x≠$\frac{1}{2}$}

查看答案和解析>>

同步练习册答案