精英家教网 > 高中数学 > 题目详情
8.sin(70°)[1-$\sqrt{3}$tan(50°)]=-1.

分析 化切为弦,通分后化积,利用倍角的正弦公式得答案.

解答 解:$sin(70°)[1-\sqrt{3}tan(50°)]$=$sin(70°)•(1-\frac{\sqrt{3}sin50°}{cos50°})$
=$sin70°•(\frac{cos50°-\sqrt{3}sin50°}{cos50°})$=$sin70°•\frac{2cos(50+60)}{cos50°}$
=$\frac{-2sin70°sin20°}{cos50°}$=$\frac{-[cos(70°-20°)-cos(70°+20°)]}{cos50°}$
=$\frac{-cos50°}{cos50°}$=-1,
故答案为:-1.

点评 本题考查了三角函数的化简与求值,考查了切化弦及倍角公式的应用,关键是边角和化积,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在△ABC中,三个内角A,B,C所对的边分别为a,b,c,已知函数f(x)=sin(3x+B)+cos(3x+B)是偶函数,且b=f($\frac{π}{12}$).
(1)求b.
(2)若a=$\frac{{\sqrt{2}}}{2}$,求角C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=$\sqrt{x-1}$+$\sqrt{2-x}$的定义域为[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一个袋子里装有7个球,其中有红球4个,编号分别为1,2,3,4;白球3个,编号分别为1,2,3.从袋子中任取4个球(假设取到任何一个球的可能性相同).
(1)求取出的4个球中,含有编号为3的球的概率;
(2)在取出的4个球中,红球编号的最大值设为X,求随机变量X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,且a1=1,Sn=n2an(n∈N*).
(1)写出S1,S2,S3,S4,并猜想Sn的表达式;
(2)用数学归纳法证明你的猜想,并求出an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在区间[2a+3,1-a]上的函数f(x)的图象关于原点对称,则g(x)=ax+4+a在R上(  )
A.增函数,奇函数B.减函数,奇函数
C.非奇非偶的增函数D.非奇非偶的减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=sin(ωx+$\frac{π}{6}$),(ω>0)最小正周期为π,则f($\frac{π}{3}$)的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}$(sin2x-$\sqrt{3}$cos2x+$\sqrt{3}$).
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=|log2x|在区间[m-2,2m]内有定义且不是单调函数,则m的取值范围为(2,3).

查看答案和解析>>

同步练习册答案