精英家教网 > 高中数学 > 题目详情
15.在△ABC中,三个内角A,B,C所对的边分别为a,b,c,已知函数f(x)=sin(3x+B)+cos(3x+B)是偶函数,且b=f($\frac{π}{12}$).
(1)求b.
(2)若a=$\frac{{\sqrt{2}}}{2}$,求角C.

分析 (1)利用两角和的正弦函数公式化简函数解析式可得f(x)=$\sqrt{2}sin(3x+B+\frac{π}{4})$,由题意可得
$B+\frac{π}{4}=kπ+\frac{π}{2}$,结合B范围可求B,求得解析式,即可得解b=f($\frac{π}{12}$)的值.
(2)由已知及正弦定理得$sinA=\frac{1}{2}$,结合大边对大角及A的范围可求A,利用三角形内角和定理即可得解C的值.

解答 (本题满分为10分)
解:(1)f(x)=sin(3x+B)+cos(3x+B)=$\sqrt{2}sin(3x+B+\frac{π}{4})$,
∵f(x)是偶函数,
∴$B+\frac{π}{4}=kπ+\frac{π}{2}$…(2分)
∵B∈(0,π),
∴$B=\frac{π}{4}$…(4分)
∴$f(x)=\sqrt{2}cos3x$,
∴$b=f(\frac{π}{12})=\sqrt{2}cos\frac{π}{4}=1$.…(6分)
(2)∵$b=1,B=\frac{π}{4},a=\frac{{\sqrt{2}}}{2}$,由正弦定理得:$sinA=\frac{1}{2}$,…(8分)
∵a<b,
∴$A=\frac{π}{6}$,
∴从而$C=π-\frac{π}{4}-\frac{π}{6}=\frac{7π}{12}$.…(10分)

点评 本题主要考查了两角和的正弦函数公式,正弦定理,大边对大角,三角形内角和定理在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.(1)计算:${(\frac{4}{9})^{-\frac{3}{2}}}+{[{(-2)^6}]^{\frac{1}{2}}}$-lg0.4-2lg0.5-14×${log_2}\sqrt{2}$
(2)已知P(sinα,cosα)在直线y=$\frac{1}{2}$x,求$\frac{cos(π-α)+sin(π+α)}{{cos(\frac{1}{2}π-α)+sin(\frac{1}{2}π+α)}}$+2sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2(n∈N*).
(1)设bn=an+1-2an,证明数列{bn}是等比数列(要指出首项、公比);
(2)若cn=nbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知四面体P-ABC各面都是直角三角形,且最长棱长PC=2$\sqrt{3}$,则此四面体外接球的表面积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.圆x2+y2=r2(r为正常数)上任一点P到M$(\frac{r}{3}$,0)及N(a,0)的距离之比为常数k,则a=3r,k=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,既是奇函数,又在(0,π)上单调递增的是(  )
A.y=tanxB.y=exC.y=lgxD.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某几何体的三视图如图所示,则该几何体最长棱的长度为(  )
A.4B.$3\sqrt{2}$C.2$\sqrt{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为45°,|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=3,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.sin(70°)[1-$\sqrt{3}$tan(50°)]=-1.

查看答案和解析>>

同步练习册答案